• Title/Summary/Keyword: PHB

Search Result 195, Processing Time 0.033 seconds

Antimicrobial Activity of PHB/Chitosan Films and Quality of White Bread Packaged with the Films (PHB/chitosan 필름의 항균성 및 필름 포장시 식빵의 품질 특성)

  • Kim, Mee-Ra
    • Korean Journal of Human Ecology
    • /
    • v.14 no.2
    • /
    • pp.321-330
    • /
    • 2005
  • The antimicrobial activity of PHB/chitosan films and the quality of white bread packaged with the films were investigated. Chitosan film showed the highest antimicrobial activity and PHB(L) film also showed high antimicrobial activity against Fusarium solani KCTC 6636 and Penicillium citreonigrum KCTC 6927. White bread packaged with chitosan film had good moisture retention. $L^*\;and\;b^*$ of white bread increased but $a^*$ did little change during storage regardless of the film kind. The TBA values of white bread packaged with chitosan or PHB(L) film slowly increased during storage. The springiness of white bread packaged with PHB(M), PHB(L) and chitosan film was high. The colony forming units of microorganisms for white bread packaged with chitosan film were low during storage. Therefore, PHB(M), PHB(L) and chitosan films were superior to PHB(H) and PHB films as package material for white bread.

  • PDF

Investigation of Regulatory Mechanism of Flux of Acetyl-CoA in Alcaligenes eutrophus Using PHB-negative Mutant and Transformants Harboring Cloned phbCAB Genes

  • Jung, Young-Mi;Lee, Yong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.4
    • /
    • pp.215-222
    • /
    • 1997
  • The regulatory mechanism of the flux of acetyl-CoA in Alcaligenes eutrophus in unbalanced growth conditions was investigated using a PHB-negative mutant and transformants reintroduced PHB-biosynthesis enzymes through the transformation of cloned phbCAB genes. The PHB-negative mutant was defected absolutly in PHB synthase but partially in ${\beta}$-ketothiolase and acetoacetyl-CoA reductase, and excreted substantial amount of pyruvate to culture broth at late growth phase. The excretion was due to the inhibitory effect of acetyl-CoA on the activity of pyruvate dehydrogenase. The cloned phbC and phbCAB genes were transformed to the PHB-negative mutant strain to reintroduce PHB biosythesis enzymes. Pyruvate excretion could be decreased substantially but not completely by transformation of PHB synthase alone, while pyruvate excretion was ceased by transformation of all three PHB biosynthesis enzymes. To identify the most critical PHB biosynthesis enzyme influencing on the flux of acetyl-CoA, the effect of the variation of PHB biosynthesis enzymes on pyruvate dehydrogenase was investigated. ${\beta}$-Ketothiolase influenced the activity of pyruvate dehydrogenase more sensitively than PHB synthase. ${\beta}$-Ketothiolase, the first step enzyme of PHB biosynthesis that condense acetyl-CoA to acetoacetyl-CoA, seems to be the major enzyme determining the flux of acetyl-CoA to PHB biosynthesis or TCA cycle, and the rate of PHB biosynthesis in A. eutrophus.

  • PDF

Expression Analysis of ${\beta}$-Ketothiolase and Acetoacetyl-CoA Reductase of Rhodobacter sphaeroides

  • KHO, DHONG HYO;CHEOL YUN JEONG;JEONG JUG LEE
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.1031-1037
    • /
    • 2001
  • By a sequential action of ${\beta}$-ketothiolase and acetoacetyl-CoA reductase, two molecules of acetyl-CoA re converted into D-3-hydroxybutyryl-CoA, a substrate for PHB synthase to form poly-3-hydroxybutyryl-CoA, a substrate for PHB synthase to form poly-3-hydroxybutyrate (PHB) of rhodobacter sphaeroides. The ${\beta}$-ketothiolase gene, phbA, and acetoacetyl-CoA reductase gene, phbB, were cloned and analyzed for their expression. Enzyme activities of ${\beta}$-ketothiolase and acetoacetyl-CoA reductase showed constitutive levels during aerobic and photoheterotrophic growth of R. sphaeroides. In addition, no difference of each enzyme activity was observed between cells grown aerobically and photoheterotrophically. The constitutive level of the enzyme activities are regulated according to the growth phases along with growth conditions. Thus, phbAB expression is not determinative in regulating the PB content. On the other hand, phbA-deleted cell AZI accumulated only $10\%$ PHB of the wild-type, and an elevated dosage of phbAB in trans in R. sphaeroides resulted in a higher content of PHB, indicating that phbAB codes for the enzymes responsible for providing the main supply of subsyrate for PHB synthase. PHB formation by an alternative pathway that does not does not depend on the phbA-and phbB-coding enzymes is also proposed.

  • PDF

Pseudo Liquid Crystallinity and Characteristics of PHB/PEN/PET Melt Blend (PHB/PEN/PET 삼상계 용융혼합물의 의사액정상 및 특성연구)

  • 박재기;정봉재;김성훈
    • Polymer(Korea)
    • /
    • v.24 no.1
    • /
    • pp.113-123
    • /
    • 2000
  • Poly(p-hydroxybenzoate) (PHB)/poly(ethylene terephthalate) (PET) 8/2 thermotropic liquid crystalline copolyester, poly(ethylene 2,6-naphthalate) (PEN) and PET were mechanically blended to obtain the pseudo liquid crystalline (LC) phase of ternary blends. The torque values of blends with increasing PHB content were abruptly decreased above 40 wt% of PHB content, because the melt viscosity of ternary blends decreased. Tensile strength and initial modulus of blends containing above 30 wt% PHB were improved with increasing PHB content. Tensile strength and modulus of fiber were increased with PHB contents and take-up speed. Degree of transesterification and randomness of blends were increased with blending time. The blend of 40 wt% PHB was shown pseudo LC phase in the polarized optical photographs. Crystallinity of PHB/PEN/PET ternary blend were increased with PHB content.

  • PDF

Expression Analysis of phbC Coding for Poly-3-hydroxybutyrate (PHB) Synthase of Rhodobacter sphaeroides

  • Kho, Dhong-Hyo;Yang, Jai-Myung;Kim, Kun-Soo;Lee, Jeong-Kug
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.310-316
    • /
    • 2001
  • Poly-3-hydroxybutyrate (PHB) synthase catalyzed the last enzymic step to synthesize the intracellular PHB of Rhodobacter sphaeroides. No PHB was detected when the phbC coding for PhB synthase was interrupted, and its expression was regulated at the level of transcription. The cellular PHB content increased about four- to six-fold during the growth transition from the exponential to the early stationary phase under both aerobic and photoheterotrophic conditions. The PHB content during the aerobic growth seemed to be determined by the PhB synthase activity. However, the PHB synthase activity of photoheterotrophically grown cells did not correlate with the PhB content, suggesting a photoheterotrophic regulation different from the aerobic control. Thus, the PHB content of R. sphaeroides was regulated at the transcription level only under aerobic conditions.

  • PDF

Production of Enantiomerically Pure [R]-3-Hydroxybutyric acid by Metabolically Engineered Escherichia coli with Inducible System (Inducible System을 이용한 재조합 대장균으로부터 광학적으로 순수한 [R]-3-Hydroxybutyric acid 생산)

  • 이영;최종일;이상엽
    • KSBB Journal
    • /
    • v.19 no.4
    • /
    • pp.327-330
    • /
    • 2004
  • An inducible expression system of poly[(R)-3-hydroxybutyrate] (PHB) depolymerization was established in metabolically engineered Escherichia coli with the PHB biosynthesis genes. The Ralstonia eutropha PHB depolymerase gene was cloned in a vector system containing the PHB biosynthesis genes and expressed under inducible promoter. Recombinant E. coli harboring the PHB biosynthesis genes and depolymerase gene was first cultured for the accumulation of PHB, and then the depolymerase was expressed resulting in the degradation of accumulated PHB into (R)-3-hydroxybutyric acid (R3HB). R3HB could be produced with the concentration of 7.6 g/L in flask culture. Two different PHB biosynthesis genes from Alcaligenes latus and R. eutropha were compared for the production of R3HB. This strategy can be used for the production of enantiomerically pure (R)-hydroxycarboxylic acids with high concentration.

Economic Consideration of Poly(3-hydroxybutyrate) Production by Fed-batch Culture of Ralstonia eutropha KHB 8862 (Ralstonia eutropha의 유가식 발효에 의한 Poly(3-hydroxybutyrate) 생산의 경제성 분석)

  • 김갑진;양영기;이영하
    • Korean Journal of Microbiology
    • /
    • v.37 no.1
    • /
    • pp.92-99
    • /
    • 2001
  • High-cell-density cultivation of Ralstonia eutopha KHB 8862 by fed-batch fermentation in a 200 l pilot plant was carried out for the mass production of poly(3-hydroxybutyrate) (PHB). After 80 h of cultivation, the dry cell weight (DCW), PHB concentration, and PHB yield from fructose syrup reached 168 g/l, 74%DCW, and 0.27 (w/w), respectively, resulting in a productivity of 1.6 g of PHB/L/h. Based on these results, the PHB production cost from bacterial fermentation was analyzed and economic evaluation was performed. In the case of new investment being implemented or not, the production cost of PHB was US$ 3.15/kg and US$ 2.41/kg, respectively. PHB productivity and PHB yield on a carbon substrate were both important factors to be optimized. The increase of PHB yield on a carbon sources significantly decreased the PHB production cost but the increase in productivity had a relatively slight effect on the decrease in PHB production cost because the cost of carbon sources (37%) for PHB was larger in proportion to total cost than the depreciation cost (17%). These results suggest that the increased PHB yield from carbon sources and the development of new cheaper substrates would be more effective in decreasing PHB production cost than the increase in productivity. It was demonstrated that PHB is not in competition with consumable plastics such as PET in present market. Therefore, it is essential to lower production cost to be used as a bulk product and desirable to develop new application fields for PHB such as biomedical and cosmeceuticals.

  • PDF

Recovery of Poly(3-hydroxybutyrate) from the Coagulated Cells of Alcaligenes eutrophus. (응집 처리한 Alcaligenes eutrophus 균체로부터 poly(3-hydroxybutyrate)의 회수)

  • 조경숙;홍은화;류희욱;장용근
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.3
    • /
    • pp.206-212
    • /
    • 1998
  • The effects of the pretreatment with coagulants on the recovery efficiency of poly (3-hydroxybutyrate, PHB) synthesized in Alcaligenes eutrophus were investigated. Al-base or Fe-base coagulants, and the dispersion method of 30% hypochlorite solution and chloroform were used as coagulants and PHB recovery method, respectively The recovery efficiency of PHB from the cells harvested with Al-base coagulants at the range from 0 to 1000 mg-Al/L was similar to that from cells harvested without the coagulants. At these conditions, the concentrations of residual aluminium in the purified PHB were below 250 mg-Al/kg-PHB, indicating the effect of residual aluminum on the characteristics of the purified PHB can be insignificant. When the dosage of coagulants was over 1000 mg-Al/L, the PHB recovery remarkably decreased with increasing the coagulant dosage. However, the PHB recovery could be enhanced by the use of 50% hypochlorite solution instead of 30% hypochlorite solution. Even though the reduction of PHB recovery efficiency was not found by using Fe-base coagulants, the purified PHB was stained pale red due to residual iron, These results suggest that the use of Al-base coagulants did not exert bad influence on neither PHB recovery efficiency and PHB purity.

  • PDF

Gas and Lipid Permeabilities and Biodegradability of Poly(3-Hydroxybutyric Acid)/Chitosan Blend Film (Poly(3-Hydroxybutyric Acid)와 Chitosan 블렌드 필름의 기체 투과도, 유지 투과도 및 생분해도)

  • 김미라
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.7
    • /
    • pp.1224-1229
    • /
    • 2004
  • The blend films of poly(3-hydroxybutyric acid) (PHB) with chitosan were prepared and water vapor transmission rate, oxygen permeability and lipid permeability of the PHB/chitosan films were measured. Additionally, the biodegradability of the PHB/chitosan films was also evaluated. Water vapor transmission rate and oxygen permeability of the films decreased by the addition of chitosan. The addition of polyethylene glycol (PEG, plasticizer), however, increased the water vapor transmission rate and oxygen permeability of the films. In the evaluation of lipid permeability, all the films except PHB (the film made of only PHB) and PHB-P (the film made of PHB and PEG) did not permeate beef tallow for 24 hours. The consumed oxygen for PHB/chitosan films during incubation was greater than that for the control on the biodegradability determination of the films, which implies that PHB/chitosan films were degraded by the microorganisms. The higher PHB ratio of the films was, the faster biodegradation of the films occurred.

Enzymatic Characteristics of Biosynthesis and Degradation of Poly-$\beta$-hydroxybutyrate of Alcaligenes latus

  • Kim, Tae-Woo;Park, Jin-Seo;Lee, Yong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.6
    • /
    • pp.425-431
    • /
    • 1996
  • The enzymatic characteristics of Alcaligenes latus were investigated by measuring the variations of various enzyme activities related to biosynthesis and degradation of poly-${\beta}$-hydroxybutyrate (PHB) during cultivation. All PHB biosynthetic enzymes, ${\beta}$-ketothiolase, acetoacetyl-CoA reductase, and PHB synthase, were activated gradually at the PHB accumulation stage, and the PHB synthase showed the highest value among three enzymes. This indicates that the rate of PHB biosynthesis is mainly controlled by either ${\beta}$-ketothiolase or acetoacetyl-CoA reductase rather than PHB synthase. The enzymatic activities related to the degradation of PHB were also measured, and the degradation of PHB was controlled by the activity of PHB depolymerase. The effect of supplements of metabolic regulators, citrate and tyrosine, was also investigated, and the activity of glucose-6-phosphate dehydrogenase was increased by metabolic regulators, especially by tyrosine. The activities of ${\beta}$-ketothiolase and acetoacetyl-CoA reductase were also activated by citrate and tyrosine, while the activity of PHB depolymerase was depressed. The increased rate and yield of PHB biosynthesis by metabolic regulators may be due to the increment of acetyl-CoA concentration either by the repression of the TCA cycle by citrate through product inhibition or by the activation of sucrose metabolism by the supplemented tyrosine.

  • PDF