• Title/Summary/Keyword: PH-cycling model

Search Result 3, Processing Time 0.017 seconds

THE REMINERALIZING EFFECTS OF EARLY ENAMEL CAR10US LESION BY SUPERSATURATED BUFFER SOLUTION UNDER PH CYCLING MODEL (pH 순환 모델에서 과포화 용액의 초기 우식 법랑질에 대한 재광화 효과)

  • 김소라;홍석진;노병덕;이찬영;금기연
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.4
    • /
    • pp.341-349
    • /
    • 2001
  • Dental caries is the most common oral disease. There are many factors contributing to its development, but complete understanding and prevention are not fully known. However, it is possible to remineralize the early enamel curious lesion by fluoride containing remineralization solution. Recently the pH-cycling model has been used to examine the effect of fluoride solution on remineralization of artificial caries in vitro as it can closely simulate the conditions encountered in vivo within a carefully controlled environment. The aim of this study was to evaluate the remineralizing effects of supersaturated buffer solutions under pH-cycling model. The specimen with 3mm-diameter was made using mature bovine incisors which has no caries and has sound enamel surface. Early curious lesions were produced by suspending each specimens into demineralization solution at pH 5.0 for 33 hours and the specimen whose surface hardness value ranged from 25 to 45 VHN were used. The pH cycling treatment regimen consisted of 5 min soaks of three treatment solutions four times per days for 15 days and the continuous cycling of demineralization and remineralization were carried out for 15 days. Following the pH-cycling treatment regimen, the specimens' surface microhardness were measured by the Vickers hardness test (VHN) and analyzed by ANOVA and Duncan's multiple-range test. 1. The surface microhardness value of supersaturated solution, Senstime, and Gagline groups were increased after pH cycling, and that of supersaturated solution was significantly Increased compared to saline group(P<0.05). 2. The surface remineralization effect of fluoride containing solutions was accelerated by saliva under pH-cycling mode 3. The pH cycling model was considered appropriate to mimic the intra-oral pH changes when evaluating demineralization and remineralization in vitro. Under the results of above study, salivary remineralization effect can be improved by fluoride containing remineralization solution. The pH-cycling model was considered appropriate to mimic the intra-oral pH changes when evaluating demineralization and remineralization in vitro.

  • PDF

The Surface Characteristics of Enamel according to Fluoride Application Methods and Frequency (불소 도포 방법과 적용 횟수에 따른 법랑질의 표면 특성)

  • Jang, Sun-Ok;Choi, Eun-Mi;Oh, Sang-Hwan;Kang, Min-Kyung;Kim, Kwang-Man
    • Journal of dental hygiene science
    • /
    • v.11 no.2
    • /
    • pp.69-76
    • /
    • 2011
  • The aim of this study was to compare the effects on the resistance to demineralization by the frequency and method of fluoride application in vitro. ninety-one human enamel specimens were embedded in acrylic resin with the labial surfaces exposes. The specimens were divided into 7 groups; (1) non-treated; (2) 1.23% APF gel 1 time; (3) 2% NaF sol 1 time; (4) 2% NaF sol iontophoresis 1 time; (5) 1.23% APF gel 4 time; (6) 2% NaF sol 4 time; (7) 2% NaF sol iontophoresis 4 time. All the groups were immersed in the remineralizing solution (RS) before baseline and divided into 7 test groups of 13 specimens each. All the specimens were exposed to a pH-cycling model which consisted of demineralization (6 hours) and remineralization (18 hours) for 5 days. The Vickers surface micro-hardness number of all the specimens was measured using microhardness tester and the specimen surfaces were observed by scanning electron microscope (SEM). The results were analyzed using one-way ANOVA followed a Tukey's multiple comparison at a significance level of 0.05. The group 7 showed higher level of microhardness after Fluoride application. The group 1 showed lowest level of microhardness but group 7 showed higher level of microhardness after pH-cycling model, there were significant differences between groups. After the modified pH-cycling, the 2% NaF solution with the iontophoresis group showed the best resistance to demineralization(p<0.05). These results were also confirmed by SEM. The fluoride iontophoresis method was the most effective of the regimens in increasing the acid resistance of the enamel.

Resin infiltrant protects deproteinized dentin against erosive and abrasive wear

  • Ana Theresa Queiroz de Albuquerque;Bruna Oliveira Bezerra;Isabelly de Carvalho Leal;Maria Denise Rodrigues de Moraes;Mary Anne S. Melo;Vanara Florencio Passos
    • Restorative Dentistry and Endodontics
    • /
    • v.47 no.3
    • /
    • pp.29.1-29.10
    • /
    • 2022
  • Objectives: This study aimed to investigate the anti-erosive/abrasive effect of resin infiltration of previous deproteinized dentin. Materials and Methods: Dentin slabs were randomly assigned to 3 groups (n = 15): Control (no deproteinization; no resin infiltrant applied), RI (no deproteinization; resin infiltrant applied), and DRI (deproteinization; resin infiltrant applied). After undergoing the assigned treatment, all slabs were subjected to an in vitro cycling model for 5 days. The specimens were immersed in citric acid (0.05 M, pH = 3.75; 60 seconds; 3 times/day) and brushed (150 strokes). Between the challenges, the specimens were exposed to a remineralizing solution (60 minutes). The morphological alterations were analyzed by mechanical profilometry (㎛) and scanning electron microscopy (SEM). Data were submitted to one-way analysis of variance (ANOVA) and Tukey tests (p < 0.05). Results: Control and RI groups presented mineral wear and did not significantly differ from each other (p = 0.063). DRI maintained a protective layer preserving the dentin (p < 0.001). After erosive/abrasive cycles, it was observed that in group RI, only 25% of the slabs partially evidenced the presence of the infiltrating, while, in the DRI group, 80% of the slabs presented the treated surface entirely covered by a resin-component layer protecting the dentin surface as observed in SEM images. Conclusions: The removal of the organic content allows the resin infiltrant to efficiently protect the dentin surface against erosive/abrasive lesions.