• Title/Summary/Keyword: PGPR

Search Result 148, Processing Time 0.022 seconds

Purification and Characterization of the Siderophore from Bacillus licheniformis K11, a Multi-functional Plant Growth Promoting Rhizobacterium. (다기능 PGPR균주 Bacillus licheniformis K11이 생산하는 항진균성 Siderophore의 정제와 특성)

  • Woo, Sang-Min;Woo, Jae-Uk;Kim, Sang-Dal
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.2
    • /
    • pp.128-134
    • /
    • 2007
  • Previously, we isolated plant growth promoting rhizobacterium (PGPR) Bacillus licheniformis K11 which could produce auxin, cellulase and siderophore. The siderophore of B. licheniformis K11 $(siderophore_{K11})$ was determined to be a catechol type siderophore which is produced generally by Bacillus spp. B. licheniformis K11 could produce the siderophore most highly after 96 h of incubation under nutrient broth at $20^{\circ}C$ with initial pH 9.0. For the production of the $siderophore_{K11}$, trehalose and $NH_4Cl$ were the best carbon and nitrogen sources in Davis minimal medium, respectively. The $siderophore_{K11}$ was Produced in M9 medium (pH 9.0) after 4 days at $20^{\circ}C$, and purified from culture broth of B. licheniformis K11 by using Amberlite XAD-2, Sephadex LH-20 column chromatography, and reversed-phase HPLC. The $siderophore_{K11}$ had the biocontrol activity against spore germination of P. capsici and F. oxysporum on potato dextrose agar (PDA). The results indicate that the $siderophore_{K11}$ is an antifungal mechanism of B. licheniformis K11 against phytopathogenic fungi.

Selection of the Auxin, Siderophore, and Cellulase-Producing PGPR, Bacillus licheniformis K11 and Its Plant Growth Promoting Mechanisms (Auxin, Siderophore, 및 Cellulase 생산성 다기능 식물생장촉진미생물 Bacillus licheniformis K11의 선발 및 식물생장촉진 효과)

  • Jung, Hee-Kyung;Kim, Jin-Rak;Woo, Sang-Min;Kim, Sang-Dal
    • Applied Biological Chemistry
    • /
    • v.50 no.1
    • /
    • pp.23-28
    • /
    • 2007
  • Auxin-producing antagonistic bacterium K11, which can inhibit Phytophtora capsici, was isolated from a local red-pepper field soil in Gyeong-buk. In order to check for additional PGPR(plant growth promoting rhizobacterium) functions of the strain K11, we confirmed siderophore and cellulase productions by CAS (chrome azurol S) blue agar and CMC plate with congo red, respectively. The strain K11 was identified as Bacillus licheniformis with 98% similarity on 16s rDNA comparison and Biolog analyses. B. licheniformis K11 promoted mung bean adventitious root induction and enhanced root growth of mung bean (160%), pea (150%), and Chinese cabbage (130%), Also, B. licheniformis K11 was able to effectively suppress (63%) P. capsici causing red-pepper blight in the pot in vivo test. Therefore, we could select a triple-functional PGPR which has auxin, siderophore, and cellulase producing ability for effective crops production in organic farming.

Isolation, Identification and Biological Control Activity of SKU-78 Strain against Ralstonia solanacearum (풋마름병균, Ralstonia solanacearum의 길항세균 SKU-78 균주의 분리 동정 및 특성)

  • Sung, Pil-Je;Shin, Jeong-Kun;Cho, Hong-Bum;Kim, Shin-Duk
    • Applied Biological Chemistry
    • /
    • v.48 no.1
    • /
    • pp.48-52
    • /
    • 2005
  • Six stains of plant growth promoting rhizobacteria were selected through germinating seed assay and root colonization assay. Among them, SKU-78 strain induced significant suppression of bacterial wilt disease in tomato and pepper plants. Seed treatment followed by soil drench application with this strain resulted in over 60% reduction of bacterial wilt disease compared with the control. It was suggested that SKU-78 strain activated the host defense systems in plants, based on lack of direct antibiosis against pathogen. According to Bergey's Manual of Systemic Bacteriology and 16S rDNA sequence data, SKU-78 stain was identified as Bacillus sp. SKU-78.

Tolerance to Salt Stress by Plant Growth-Promoting Rhizobacteria on Brassica rapa var. glabra

  • Hussein, Khalid A.;Yoo, Jaehong;Joo, Jin Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.776-782
    • /
    • 2016
  • Salinity has been a threat to agriculture in some parts of the world; and recently, the threat has grown. Plant growth-promoting rhizobacteria (PGPR) may benefit plant growth, either by improving plant nutrition or producing plant growth hormones. The effects of rhizobacterial strains to attenuate the salinity stress on the germination of Chinese cabbage seeds were tested using four different concentrations of NaCl (50, 100, 150, and 200 mM). Also, PGPR strains were tested to enhance the early germination of Chinese cabbage seeds under normal conditions. Azotobacter chroococcum performed best with enhancing the radicle length of 4.0, 1.2, and 1.0 times at treatments of 50, 100, and 150 mM of NaCl, respectively. Additionally, significant differences were found in plumule length, A. chroococcum and Lactobacillus sp. showed remarkable activation either in normal or under stress conditions. Co-inoculation by three rhizobacterial strains (LAPmix) indicated synergistic effect to enhance the early germination of the seeds. The results of this study are promising for application of rhizobacterial strains that possess plant growth promoting traits to enhance the plant tolerance against salinity.

Isolation and Characterization of a Plant Growth-Promoting Rhizobacterium, Serratia sp. SY5

  • Koo, So-Yeon;Cho, Kyung-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.11
    • /
    • pp.1431-1438
    • /
    • 2009
  • The role of plant growth-promoting rhizobacteria (PGPR) in the phytoremediation of heavy-metal-contaminated soils is important in overcoming its limitations for field application. A plant growth-promoting rhizobacterium, Serratia sp. SY5, was isolated from the rhizoplane of barnyard grass (Echinochloa crus-galli) grown in petroleum and heavy-metal-contaminated soil. This isolate has shown capacities for indole acetic acid production and siderophores synthesis. Compared with a non-inoculated control, the radicular root growth of Zea mays seedlings inoculated with SY5 can be increased by 27- or 15.4-fold in the presence of 15 mg-Cd/l or 15 mg-Cu/l, respectively. The results from hydroponic cultures showed that inoculation of Serratia sp. SY5 had a favorable influence on the initial shoot growth and biomass of Zea mays under noncontaminated conditions. However, under Cd-contaminated conditions, the inoculation of SY5 significantly increased the root biomass of Zea mays. These results indicate that Serratia sp. SY5 can serve as a promising microbial inoculant for increased plant growth in heavy-metal-contaminated soils to improve the phytoremediation efficiency.

Determinants of Plant Growth-promoting Ochrobactrum lupini KUDC1013 Involved in Induction of Systemic Resistance against Pectobacterium carotovorum subsp. carotovorum in Tobacco Leaves

  • Sumayo, Marilyn;Hahm, Mi-Seon;Ghim, Sa-Youl
    • The Plant Pathology Journal
    • /
    • v.29 no.2
    • /
    • pp.174-181
    • /
    • 2013
  • The plant growth-promoting rhizobacterium Ochrobactrum lupini KUDC1013 elicited induced systemic resistance (ISR) in tobacco against soft rot disease caused by Pectobacterium carotovorum subsp. carotovorum. We investigated of its factors involved in ISR elicitation. To characterize the ISR determinants, KUDC1013 cell suspension, heat-treated cells, supernatant from a culture medium, crude bacterial lipopolysaccharide (LPS) and flagella were tested for their ISR activities. Both LPS and flagella from KUDC1013 were effective in ISR elicitation. Crude cell free supernatant elicited ISR and factors with the highest ISR activity were retained in the n-butanol fraction. Analysis of the ISR-active fraction revealed the metabolites, phenylacetic acid (PAA), 1-hexadecene and linoleic acid (LA), as elicitors of ISR. Treatment of tobacco with these compounds significantly decreased the soft rot disease symptoms. This is the first report on the ISR determinants by plant growth-promoting rhizobacteria (PGPR) KUDC1013 and identifying PAA, 1-hexadecene and LA as ISR-related compounds. This study shows that KUDC1013 has a great potential as biological control agent because of its multiple factors involved in induction of systemic resistance against phytopathogens.

Biocontrol of Late Blight and Plant Growth Promotion in Tomato Using Rhizobacterial Isolates

  • Lamsal, Kabir;Kim, Sang Woo;Kim, Yun Seok;Lee, Youn Su
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.7
    • /
    • pp.897-904
    • /
    • 2013
  • Seven bacterial isolates (viz., AB05, AB10, AB11, AB12, AB14, AB15, and AB17) were derived from the rhizosphere and evaluated in terms of plant growth-promoting activities and the inhibition of Phytophthora infestans affecting tomatoes in Korea. According to 16S rDNA sequencing, a majority of the isolates are members of Bacillus, and a single isolate belongs to Paenibacillus. All seven isolates inhibited P. infestans by more than 60% in vitro. However, AB15 was the most effective, inhibiting mycelial growth of the pathogen by more than 80% in vitro and suppressing disease by 74% compared with control plants under greenhouse conditions. In a PGPR assay, all of the bacterial isolates were capable of enhancing different growth parameters (shoot/root length, fresh biomass, dry matter, and chlorophyll content) in comparison with non-inoculated control plants. AB17-treated plants in particular showed the highest enhancement in fresh biomass with 18% and 26% increments in the root and shoot biomass, respectively. However, isolate AB10 showed the highest shoot and root growth with 18% and 26% increments, respectively. Moreover, the total chlorophyll content was 14%~19% higher in treated plants.

Microbiome of Halophytes: Diversity and Importance for Plant Health and Productivity

  • Mukhtar, Salma;Malik, Kauser Abdulla;Mehnaz, Samina
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • Saline soils comprise more than half a billion hectares worldwide. Thus, they warrant attention for their efficient, economical, and environmentally acceptable management. Halophytes are being progressively utilized for human benefits. The halophyte microbiome contributes significantly to plant performance and can provide information regarding complex ecological processes involved in the osmoregulation of halophytes. Microbial communities associated with the rhizosphere, phyllosphere, and endosphere of halophytes play an important role in plant health and productivity. Members of the plant microbiome belonging to domains Archaea, Bacteria, and kingdom Fungi are involved in the osmoregulation of halophytes. Halophilic microorganisms principally use compatible solutes, such as glycine, betaine, proline, trehalose, ectoine, and glutamic acid, to survive under salinity stress conditions. Plant growth-promoting rhizobacteria (PGPR) enhance plant growth and help to elucidate tolerance to salinity. Detailed studies of the metabolic pathways of plants have shown that plant growth-promoting rhizobacteria contribute to plant tolerance by affecting the signaling network of plants. Phytohormones (indole-3-acetic acid and cytokinin), 1-aminocyclopropane-1-carboxylic acid deaminase biosynthesis, exopolysaccharides, halocins, and volatile organic compounds function as signaling molecules for plants to elicit salinity stress. This review focuses on the functions of plant microbiome and on understanding how the microorganisms affect halophyte health and growth.

Development of the Microbial Consortium for the Environmental Friendly Agriculture by the Antagonistic Rhizobacteria (다기능 PGPR 균주들의 기작별 상호보완형 컨소시엄 구성을 통한 고추역병 방제 및 고추생장촉진)

  • Lim, Jong-Hui;Jung, Hee-Young;Kim, Sang-Dal
    • Journal of Applied Biological Chemistry
    • /
    • v.52 no.3
    • /
    • pp.116-120
    • /
    • 2009
  • We found out the new method of the consortium for the environmental friendly agriculture by 8 kinds of the selected antagonistic rhizobacteria. This research involved composition of mutual complementary consortium by each antagonistic function such as production of antibiotic, siderophore, antifungal cellulase and insoluble phosphate solubilization. The consortium No.11 among composed consortium candidates showed the most pepper growth promoting activity and Phytophthora blight suppression on the in vivo pot test of red-pepper plant. The consortium No. 11 is combination of PGPR Bacillus subtilis AH18 and Bacillus licheniformis K11. B. subtilis AH18 and B. licheniformis K11 both could produce the auxin, antifungal ${\beta}$-glucannase and siderophore. Also, they had mechanism for solubilization of insoluble phosphate. But, B. licheniformis K11 could produce the antibiotic of iturin which was able to inhibit Phytophthora capsici. We confirmed complementary noncompetitive mutualism between B. subtilis AH18 and B. licheniformis K11 of the consortium No.11. The results came out through treatment of two strains co-culture, treatment of individual culture and co-treatment of two individual cultures for the growth and Phytophthora blight suppression of red-pepper. The treatment of two strains co-culture didn't show a synergic effect in comparing sole treatment on the pepper growth promotion and Phytophthora blight suppression. But, when the pots were treated simultaneously with co-treatment of two individual cultures, an synergic effect was seen in the growth promotion of roots, stem, leaves and suppressed Phytophthora blight on red-pepper in vivo pot test.