• Title/Summary/Keyword: PGE$_2$ synthesis inhibition

Search Result 46, Processing Time 0.032 seconds

Fructose 1.6-diphosphate Prevents Cyclooxygenase-2 and Matrix Metalloproteinases Expression by Inhibition of UVB-induced Signaling Cascades in HaCaT Keratinocytes (인체각질형성세포에서 Fructose 1,6-diphosphate의 자외선에 의해 유도되는 Cyclooxygenase-2 and Matrix Metalloproteinases의 발현억제기전)

  • Soo Mi, Ahn;Ji Hyun, Kim;Byeong Gon, Lee;Soo Hwan, Lee;Ih Seoup, Chang
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.247-251
    • /
    • 2004
  • UV radiation exerts various influences in the skin, including photoaging and inflammation (1). The MMPs (Matrix metalloproteinases), which are induced by UV irradiation, can degrade matrix proteins, and these results in a collagen deficiency in photodamaged skin that leads to skin wrinkling. It has been known that the production of PGE$_2$ stimulates MMPs expression, and inhibits procollagen (2). Thus, it is possible that the induction of MMPs and the inhibition of matrix protein synthesis by UV -induced PGE$_2$ may play some role in UV-induced collagen deficiency in photoaged skin. Fructose-1,6-diphosphate (FDP), a glycolytic metabolite, is reported to have cytoprotective effects against ischemia and postischemic reperfusion injury of brain and heart, presumably by augmenting anaerobic carbohydrate metabolism (3). And also, FDP significantly prevent skin aging by decreasing facial winkle compared with vehicle alone after 6 months of use. We studied the mechanism of anti-aging effect of FDP on UVB-irradiated HaCaT keratinocyte model. FDP has protective role in UVB injured keratinocyte by attenuating prostaglandin E$_2$ (PGE$_2$) production and COX-2 expression. And FDP also suppressed UVB-induced MMP-2 expression. Further, to delineate the inhibition of UVB-induced COX-2 and MMPs expression with cell signaling pathways, treatment of FDP to HaCaT keratinocytes resulted in marked inhibition of UVB-induced phosphorylation of ERK1/2, JNK. It also prevents UV induced NFB translocation, which are activated by cellular inflammatory signal. Our results indicate that FDP has protecting effects in UV-injured skin aging by decreasing UVB-induced COX-2 and MMPs expression, which are possibly through blocking UVB-induced signal cascades.

A Study on Anti-Bone Resorption & Osteoporosis by Taeyoungion-Jahage Extracts

  • Bae, Hyo-Sang;Cho, Hyung-Lae;Kim, Dong-Il;Lee, Tae-Kyun;Kim, Jun-Ki;Shin, Jung-Sik
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.15 no.4
    • /
    • pp.61-75
    • /
    • 2002
  • Recombinant human $interleukin-1{\beta}$ $(rhIL-1{\beta})$ regulates several activities of the osteoblast cells derived from mouse calvarial bone explants in vitro. $rhIL-1{\beta}$ stimulated cellular proliferation and the synthesis of prostaglandin $E_2(PGE_2)$ and plasminogen activator activity in the cultured cells in a dose-dependent manner. However, the induction of osteocalcin synthesis and alkaine phosphatase activity in response to vitamine D, two characteristics of the osteoblast phenotype, were antagonized by $rhIL-1{\beta}$ over a similar dose range. This study supports the role of $IL-1{\beta}$ in the pathological modulation of bone cell metabolism, with regard to implication in the pathogenesis of osteoporosis by $IL-1{\beta}$. When the mouse calvarial bone cells were used, the bone resorption induced by $IL-1{\beta}$ was strongly inhibited by calcitonin treatment, indicating osteoclast-mediated bone resorption. On the other hand, the medicinal extracts of Taeyoungjon-Jahage (T.Y.J-J.H.G extracts) was tested for whether they could inhibit $IL-1{\beta}-induced$ $PGE_2$ production. Cell viability was not significantly affected by treatment with the indicated concentration of the extracts. The T.Y.J.-J.H.G. extracts were shown to have the inhibitory effects against the synthesis of $PGE_2$. We also examined the effect of the pretreatment with a various concentrations of the T.Y.J.-J.H.G. extracts then treated the $PGE_2-induction$ agents. Pretreatment of the T.Y.J.-J.H.G. extracts for 1 h, which by itself had little effect on cell survival, did not enhance the synthesis of $PGE_2$. Furthermore, the T.Y.J-J.H.G. extracts were shown to have the protective effects against plasminogen dependent fibrinolysis induced by the bone resorption agents of $IL-1{\beta}$. Pretreatment of the T.Y.J.-J.H.G. extracts for 1 h did not enhance the plasminogen dependent fibrinolysis. Finally, calcitonin showed the inhibitory activity the $IL-1{\beta}-stimulated$ bone resorption in the mouse calvarial bone cells having both of the osteoblast and osteoclast cells. Seemingly, pretreatment of the T.Y.J.-J.H.G. extracts for 1 h reduced the bone resorption. These results clearly indicated that calcitonin and T.Y.J.-J.H.G. extracts play key roles in inhibition of the osteoclast-mediated bone resorption.

  • PDF

Anti-thrombic Properties of the Oriental Herbal Medicine, Daejowhan

  • Chang Gyu-Tae;Kim Jang-Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.5
    • /
    • pp.1391-1398
    • /
    • 2005
  • The anti-thrombic properties of the oriental herbal medicine Daejowhan(DJW, 大造丸) which consists of 11 kinds of herbs (indicated as ratio) of Rehmanniae Radix 24%, Hominis Placenta 5%, Testudinis Carapax 9%, Eucommiae Cortex 9%, Asparagi Radix 9%, Phellodendri Cortex 9%, Achyranthis Radix 7%, Liriopis Tuber 7%, Angelicae Sinensis Radix 7%, Ginseng Radix 5% and Schizandrae Fructus 3% were investigated. The water extracts from DJW inhibited Platelet-activating factor(PAF) induced platelet aggregation. DJW was extracted with methanol and further fractionated by ethylacetate. A 70% methanol extract showed a strong inhibition against PAF-induced aggregation in vitro and in vivo assays. The ethylacetate soluble fraction was shown to have inhibitory effect on PAF-induced platelet aggregation in vitro assay. The ethylacetate soluble fraction specially protected against the lethality of PAF, while verapamil did not afford any protection. These results indicate that the water extracts and alcoholic-fractions inhibit the action of PAF in vivo by an antagonistic effect on PAF, so that it may be useful in treating disorders caused by PAF, such as acute allergy, inflammation, asthma, gastrointestinal ulceration, toxic shock and so forth. DJW was investigated regarding its assumed anti-thrombic action on human platelets which was deduced from its ability to suppress Arachidonic acid(AA)-induced aggregation, exocytosis of ATP, and inhibition of Cyclooxygenase(COX) and Thromboxane synthase(TXS) activity. The latter two effects were estimated from the generation of Prostaglandin $E_2(PGE_2)$ and Thromboxane $A_2(TXA_2)$ respectively. Exogenously applied AA ($100{\mu}mol/{\ell}$) provoked a $89\%$ aggregation of platelets, the release of 14 pmol ATP, and the formation of either 225 pg $TXA_2$ or 45 pg $PGE_2$, each parameter being related to 106 platelets. An application of DJW 5 min before AA dose-dependently diminished aggregation, ATP-release and the synthesis of $TXA_2$ and $PGE_2$ with $IC_{50}$ values of 74, 108, 65, $72{\mu}g/m{\ell}$, respectively. The similarity of the $IC_{50}$ values suggest an inhibition of COX by DJW as primary target, thus suppressing the generation of $TXA_2$ which induces aggregation of platelets and exocytosis of ATP by its binding on $TXA_2$-receptors.

In vitro Antiinflammatory Activity of Amygdalin in Murine Macrophage Raw 264.7 Cells (Amygdalin의 Murine Macrophage Raw 264.7 세포에서 in vitro 항염효과)

  • Shin, Kyung-Min;Park, Young-Mi;Kim, In-Tae;Hong, Seon-Pyo;Hong, Jung-Pyo;Lee, Kyung-Tae
    • Korean Journal of Pharmacognosy
    • /
    • v.34 no.3 s.134
    • /
    • pp.223-227
    • /
    • 2003
  • In the present study, anti-inflammatory activity of amygdalin isolated from persicae Semen have been evaluated on lipopolysaccharide (LPS)-induced release of nitric oxide (NO), prostaglandin $E_2\;(PGE_2)$ and tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$) by the macrophage RAW 264.7 cells. Amygdalin significantly inhibited generation of NO and $TNF-{\alpha}$ on LPS-stimulated RAW264.7 cells in a concentration-dependent manner. Consistent with these observations, the expression of inducible NO synthase (iNOS) enzyme was also inhibited by amygdalin in a concentration-dependent manner. However, amygdalin did not show any influence on the synthesis of $PGE_2$ and the expression of COX-2. Thus, this study suggests that amygdalin-mediated inhibition of iNOS expression, and $TNF-{\alpha}$ release may be one of the mechanisms responsible for the anti-inflammatory effects of Persicae Semen.

Genistein-induced Growth Inhibition was Associated with Inhibition of Cyclooxygenase-2 and Telomerase Activity in Human Cancer Cells. (인체 암세포에서 genistein에 의한 cyclooxygenase-2 및 telomerase의 활성 저하)

  • Kim, Jung-Im;Kim, Seong-Yun;Seo, Min-Jeong;Lim, Hak-Seob;Lee, Young-Choon;Joo, Woo-Hong;Choi, Byung-Tae;Jeong, Yong-Kee;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.18 no.6
    • /
    • pp.884-890
    • /
    • 2008
  • Genistein, an isoflavone in soybean products, is a potential chemopreventive agent against various types of cancer. There are several studies documenting molecular alterations leading to cell cycle arrest at G2/M phase and induction of apoptosis; however, its mechanism of action and its molecular targets on the prostaglandin $E_2$ ($PGE_2$) production and telomere length regulation in human cancer remain unclear. In this study, we investigated the effect of genistein on the levels of cyclooxygenases (COXs) and telomere regulatory components of several human cancer cell lines (T24, human bladder carcinoma cells; U937, human leukemic cells; AGS, human stomach adenocarcinoma cells and SK-MEL-2, human skin melanoma cells). Genistein treatment resulted in the inhibition of cancer cell proliferation in a concentration-dependent manner. It was found that genistein treatment markedly decreased the levels of COX-2 mRNA and protein expression without significant changes in the expression of COX-1, which was correlated with a decrease in $PGE_2$ synthesis. Genistein treatment also partly inhibited the levels of human telomerase reverse transcriptase (hTERT) as well as human telomerase RNA (hTR) and telomerase-associated protein (TEP)-1, and the activity of telomerase. Taken together, these findings provide important new insights into the possible molecular mechanisms of the anti-cancer activity of genistein.

COX-2 INHIBITOR INDUCED APOPTOSIS IN ORAL SQUAMOUS CELL CARCINOMA CELL LINE THROUGH AKT PATHWAY (COX-2 억제제에 의한 AKT 경로를 통한 구강편평세포암종 세포주의 세포사멸 유도)

  • Seo, Young-Ho;Han, Se-Jin;Lee, Jae-Hoon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.1
    • /
    • pp.30-40
    • /
    • 2008
  • The objectives of this study was to check up the effect of celecoxib, COX-2 inhibitor, on the pathogenesis of oral squamous cell carcinoma. After mefenamic acid, aspirin and celecoxib, COX-2 inhibitor, were inoculated to HN 22 cell line, the following results were obtained through tumor cell viability by wortmannin, growth curve of tumor cell line, apoptotic index, PGE2 synthesis, total RNA extraction, RT-PCR analysis and TEM features. 1. When wortmannin and celecoxib were given together, the survival rate of tumor cells was lowest about 47 %. So wortmannin had an effect on the decrease of survival rate of tumor cells. 2. In growth curve, the slowest growth was observed in celecoxib inoculated group. 3. The synthesis of PGE2 was decreased in all group and the obvious suppression and highest apoptotic index was observed in celecoxib inoculated group. 4. Suppression of expression of COX-2 mRNA was evident in celecoxib inoculated group. But that of COX-1,2 mRNA was observed in mefenamic acid inoculated group and aspirin inoculated group. 5. In celecoxib inoculated group, mRNA expression of AKT1 was decreased and that of PTEN & expression of caspase 3 and 9 was evidently increased. Depending on above results, when celecoxib was inoculated to oral squamous cell carcinoma cell line, an increase of mRNA expression of caspase 3,9 and PTEN is related to a decrease of mRNA expression of AKT1. Wortmannin had an effect on the decrease of survival rate of tumor cells. Celecoxib might induce apoptosis of tumor cell by suppression of AKT1 pathway and COX-2 inhibition. This results suggested that COX-2 inhibitor might be significantly effective in chemoprevention of oral squamous cell carcinoma.

Synthesis and Antiinflammatory Effects of a New Tricyclic Diterpene and Its Analogues as Potent COX-2 Inhibitors

  • Suh, Young-Ger;Kim, Young-Ho;Park, Hyoung-Sup;Lee, Hye-Kyung;Park, Young-Hoon;Kim, Ji-Young;Min, Kyung-Hoon;Shin, Dong-Yun;Jun, Ra-Ok
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2000.04a
    • /
    • pp.10-14
    • /
    • 2000
  • The cycloooxygenase enzymes catalyze the oxidative conversion of arachidonic acid into prostag1andin H$_2$Which mediates both benificial and pathological effects. The COX-1 is constitutively expressed in most tissues and in blood platelets wherease the expression of COX-2 isoform is induced in response to inflmmatory stimuli such as cyctokynes. Thus the identification of a novel COX-2 selective inhibitor should offer excellent antiinflammatory activity with minimal side effects such as gastrointestinal toxicity. Recently, a group of structurally unique and biologically active pimarane diterpenoids has been isolated from indigenous Korean medicinal plants. These new diterpenoids turned out to be potential analgesic and antiinflammatory agent due to their potent inhibitory activities of prostaglandin synthesis. We have also found that the inhibition of PGE$_2$synthesis is attributed to the potent COX inhibition by pimarane diterpenoid in arachidonic acid cascade. In conjunction with development of new analgesic and nonsteroidal antiinflammatory agent, a series of works on these diterpenoids have been extensively carried out in our laboratories. These efforts involve the structure-activity relationship of pimaradienoic acid, molecular modelings and COX inibitory activities as well as actiinflammatory effects of its structural analogues. In addition, the total syntheses of the new natural pimarane diterpenoids, their stereoisomers and other structural variants were intensively investigated.

  • PDF

Biological Effects Of Flurbiprofen Loaded Chitosan To Gingival Fibroblast (Flurbiprofen 함유 키토산 제제가 치은 섬유아세포에 미치는 영향)

  • Chung, Chong-Pyoung;Park, Yoon-Jeong;Lee, Seung-Jin;Rhyu, In-Cheol;Choi, Sang-Mook
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.1
    • /
    • pp.317-333
    • /
    • 1996
  • The main goal of periodontal regeneration is to be achieved by epithelial exclusion, periodontal ligament cell activation or alveolar bone regeneration. The purpose of this study was to investigate on the physico- chemical and biological characteristics of biodegradable chitosan beads. Chitosan beads were fabricated by ionic gelation with sodium tripolyphosphate and they had the size in 300um diameter. As therapeutic agent, flurbiprofen was incorporated into the beads by 10, 20% loading contents. The release of drugs from the chitosan beads was measured in vitro. Also, biological activity tests of flurbiprofen loaded chitosan beads including cytotoxicity test, ihhibition of $IL-1{\beta}$ production, suppression to $PGE_2$ production, collagenase inhibition test, the ability of total protein synthesis, and tissue response were evaluated. The amount of flurbiprofen released from chitosan was 33-50% during 7 days. Minimal cytotoxicity was observed in chitosan beads. Flurbiprofen released from chitosan beads significantly suppressed the $IL-1{\beta}$ production of monocyte, $PGE_2$ production and markedly inhibited collagenase activity. Meanwhile, flurbiprofen released from this system showed increased ability for protein synthesis. Throughout 4 -week implantation period, no significant inflammatory cell infiltrated around chitosan bead and also fibroblast like cell types at the beads - tissue interface were revealed with gradual degradation of implanted chitosan beads. From these results, it was suggested that flurbiprofen loaded chitosan beads can be effectively useful for biocompatible local delivery system in periodontal regeneration.

  • PDF

Antiproliferative effect of Chungjogupae-tang treatment was associated with the inhibition of prostaglandin E2 release and Telomere active in human lung carcinoma cells (인체폐암세포에서의 prostaglandin E2 생성과 Telomere 활성에 미치는 청조구폐탕의 영향에 관한 연구)

  • Kim, Hoon;Park, Dong-Il
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.19 no.2
    • /
    • pp.26-39
    • /
    • 2006
  • Objective : The effect of water extract of Chungjogupae-tang (CJGPT) was investigated on the growth of human lung carcinoma A549 cells. Methods : MTT assay and fluorescent microscope performed to compare and examine the efficacy of CJGPT treatment on the cytostaticity of lung cancer cells in proportion to time and doses, and DAPI staining and Western blot analysis were used to examine their effect on apoptosis. In addition the quantitative RT-PCR was used to examine to lung cancer cells growth and Progtaglandin E2 and Telomerase activity were measured Results : Exposure of A549 cells to CJGPT resulted in the growth inhibition and apoptosis in a dose-dependent manner as measured by MTT assay and fluorescent microscope. The antiuoliferative effect by CJGPT treatment in A549 cells was associated with morphological changes such as membrane shrinking and cell rounding up. CJGPT treatment resulted in an up-regulation of cyclin-dependent kinase inhibitor p21(WAF1/CIPl) in a p53-independent fashion. We found that CJGPT treatment decreased the levels of cyclooxygenase (COX)-2 and inducible nitric oxide synthease (iNOS) expression without significant changes in the expression of COX-1, which was correlated with a decrease in protaglandin E2 (PGE2) synthesis. CJGPT treatment also inhibited the levels of human telomerase reverse transcriptase (hTERT) and telomerase-associated protein (TEP)-1 mRNA expression, however the activity of telomerase was slightly increased by CJGPT treatment. Conclusion : These findings suggested that CJGPT-induced inhibition of human lung carcinoma A549 cell growth was connected with the induction of apoptotic cell death and the results provided important new insights into the possible molecular mechanisms of the anti-cancer activity of CJGPT.

  • PDF

Studies on Anti-Inflammatory and Anti-Melanogenic Effect of Grape Fruit Stem Extract (포도송이가지 추출물의 항염증 및 미백효능에 대한 연구)

  • Choi, Anna;Lee, Hyun-Seo;Kim, Jang Ho;Cho, Byoung Ok;Shin, Jae Young;Jeong, Seung-Il;Jang, Seon Il
    • The Korea Journal of Herbology
    • /
    • v.32 no.3
    • /
    • pp.71-78
    • /
    • 2017
  • Objectives : The various grape extracts derived from grape pulp, seed and skin, containing various types of polyphenols and flavonoids, have been known to have anti-inflammatory, antioxidant and improve cardiovascular condition as well as sun's damaging effects. However, there have been rare reports of various beneficial effects of grape fruit stem extract (GFSE), one of the waste products of grapes. We investigated anti-inflammatory and melanogenesis inhibitory effects of GFSE. Methods : One-hundred gram of grape fruit stem was extracted with 80% ethanol at room temperature for 3 days. After filtration, the ethanol was removed using vacuum evaporator, then lyophilized to obtain the dry extract which was stored at $-20^{\circ}C$ until used. NO levels were measured by using Greiss reagent. Prostaglandin $E_2$ ($PGE_2$) production was measured by ELISA assay. The expression levels of iNOS, COX-2, TRP-1 and TRP-2 were evaluated by western blot analysis. Results : GFSE reduced the level of nitric oxide and prostaglandin $E_2$ ($PGE_2$) production in a dose-dependent manner, compared to control. Expressions of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) protein were also effectively inhibited by the GFSE. In a tyrosinase inhibitory activity, GFSE significantly reduced the tyrosinase activity and melanin content in a dose dependent manner, compared to control. GFSE also decreased the expression of tyrosinase related protein-1 (TRP-1) and tyrosinase related protein-2 (TRP-2), known as a melanocyte-specific gene product involved in melanin synthesis. Conclusions : Therefore, these results indicated that GFSE had powerful anti-inflammatory and anti-melanogenic effects.