• Title/Summary/Keyword: PFC simulation

Search Result 215, Processing Time 0.022 seconds

Mechanical and fracture behavior of rock mass with parallel concentrated joints with different dip angle and number based on PFC simulation

  • Zhao, Weihua;Huang, Runqiu;Yan, Ming
    • Geomechanics and Engineering
    • /
    • v.8 no.6
    • /
    • pp.757-767
    • /
    • 2015
  • Rock mass is an important engineering material. In hydropower engineering, rock mass of bank slope controlled the stability of an arch dam. However, mechanical characteristics of the rock mass are not only affected by lithology, but also joints. On the basis of field geological survey, this paper built rock mass material containing parallel concentrated joints with different dip angle, different number under different stress conditions by PFC (Particle Flow Code) numerical simulation. Next, we analyzed mechanical property and fracture features of this rock mass. The following achievements have been obtained through this research. (1) When dip angle of joints is $15^{\circ}$ and $30^{\circ}$, with the increase of joints number, peak strength of rock mass has not changed much. But when dip angle increase to $45^{\circ}$, especially increase to $60^{\circ}$ and $75^{\circ}$, peak strength of rock mass decreased obviously with the increase of joints number. (2) With the increase of confining stress, peak strengths of all rock mass have different degree of improvement, especially the rock mass with dip angle of $75^{\circ}$. (3) Under the condition of no confining stress, dip angle of joints is low and joint number is small, existence of joints has little influence on fracture mode of rock mass, but when joints number increase to 5, tensile deformation firstly happened at joints zone and further resulted in tension fracture of the whole rock mass. When dip angle of joints increases to $45^{\circ}$, fracture presented as shear along joints, and with increase of joints number, strength of rock mass is weakened caused by shear-tension fracture zone along joints. When dip angle of joints increases to $60^{\circ}$ and $75^{\circ}$, deformation and fracture model presented as tension fracture zone along concentrated joints. (4) Influence of increase of confining stress on fracture modes is to weaken joints' control function and to reduce the width of fracture zone. Furthermore, increase of confining stress translated deformation mode from tension to shear.

Characteristics of the Progressive Brittle Failure around Circular Opening by Scaled Model Test and Discrete Element Analysis (축소 모형시험과 개별 요소 해석에 의한 원형 공동 주변의 점진적 취성파괴 특성에 관한 연구)

  • Jeon Seok-Won;Park Eui-Seob;Bae Seong-Ho
    • Tunnel and Underground Space
    • /
    • v.15 no.4 s.57
    • /
    • pp.250-263
    • /
    • 2005
  • Progressive and localized brittle failures around an excavated opening by the overstressed condition can act as a serious obstacle to ensure the stability and the economical efficiency of construction work. In this paper, the characteristics of the brittle failure around an circular opening with stress level was studied by the biaxial compressive test using sealed specimen and by the numerical simulation with $PFC^{2D}$, one of the discrete element codes. The occurring pattern and shape of the brittle failure around a circular opening monitored during the biaxial loading were well coincided with those of the stress induced failures around the excavated openings observed in the brittle rock masses. The crack development stages with stress level were evaluated by the detailed analysis on the acoustic emission event properties. The microcrack development process around a circular opening was successfully visualized by the particle flow analysis. It indicated that the scaled test had a good feasibility in understanding the mechanism of the brittle failure around an opening with a high reliability.

Review of the Synthetic Rock Mass Approach (합성암반체 접근법에 대한 고찰)

  • Park, Chul-Whan;Synn, Joong-Ho;Park, Eui-Seop
    • Tunnel and Underground Space
    • /
    • v.17 no.6
    • /
    • pp.438-447
    • /
    • 2007
  • This technical report is to introduce the research on SRM (Synthetic Rock Mass) which was presented in 2007 ISRM Congress at Lisbon by Prof, Fairhurst who speak with emphasis on its importance and potential in rock engineering. The Synthetic Rock Mass approach to jointed rock mass characterization (Pierce et al. 2007) is reviewed relative to existing empirical approaches and current understanding of jointed rock mass behaviour. The review illustrates how the key factors affecting the mechanical behaviour of jointed rock masses may be considered and demonstrates that the SRM approach constitutes a significant step forward in this field. This technique, based on two well-established methods, Bonded Particle Modelling in PFC-3D (Potyondy and Cundall, 2004) and Discrete Fracture Network simulation, employs a new sliding joint model that allows for large rock volumes containing thousands of pre-existing joints to be subjected to any non-trivial stress path. Output from SRM testing includes rock mass brittleness and strength, evolution of the full compliance matrix and primary fragmentation.

Simulation of fracture mechanism of pre-holed concrete model under Brazilian test using PFC3D

  • Sarfarazi, Vahab;Haeri, Hadi;Shemirani, Alireza Bagher
    • Smart Structures and Systems
    • /
    • v.22 no.6
    • /
    • pp.675-687
    • /
    • 2018
  • In the previous studies on the porous rock strength the effect of pore number and its diameter is not explicitly defined. In this paper crack initiation, propagation and coalescence in Brazilian model disc containing a single cylindrical hole and or multiple holes have been studied numerically using PFC3D. In model with internal hole, the ratio of hole diameter to model diameter was varied between 0.03, 0.17, 0.25, 0.33, and 0.42. In model with multiple hole number of holes was different in various model, i.e., one hole, two holes, three holes, four holes, five holes, six holes, seven holes, eight holes and nine holes. Diameter of these holes was 5 mm, 10 mm and 12 mm. The pre-holed Brazilian discs are numerically tested under Brazilian test. The breakage load in the ring type disc specimens containing an internal hole with varying diameters is measured. The mechanism of cracks propagation in the wall of the ring type specimens is also studied. In the case of multi-hole Brazilian disc, the cracks propagation and b cracks coalescence are also investigated. The results shows that breaking of the pre-holed disc specimens is due to the propagation of radially induced tensile cracks initiated from the surface of the central hole and propagating toward the direction of diametrical loading. In the case of disc specimens with multiple holes, the cracks propagation and cracks coalescence may occur simultaneously in the breaking process of model under diametrical compressive loading. Finally the results shows that the failure stress and crack initiation stress decreases by increasing the hole diameter. Also, the failure stress decreases by increasing the number of hole which mobilized in failure. The results of these simulations were comprised with other experimental and numerical test results. It has been shown that the numerical and experimental results are in good agreement with each other.

Buck-Type Charging Method for Loss Reduction of Multi-Function Inverter (다기능 인버터의 손실저감을 위한 Buck-Type 충전기법)

  • Kim, Dong-Hee;Woo, Dong-Gyun;Lee, Byoung-Kuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.8
    • /
    • pp.1523-1528
    • /
    • 2011
  • This paper proposes buck-type charging method using motor inductance, 3-phase inverter and bi-directional converter without an additional charger in plug-in hybrid electric vehicles. The proposed system has advantages over the conventional system such as high charging efficiency, high power factor, and low total harmonic distortion. The validity of each methods are verified by theoretical analysis and simulation.

Mathatical Analysis for Efficiency of Power Factor Correction System Using IP3003 (역률 보상 반도체 IP3003을 이용한 역률 보상기의 효율 분석)

  • Joo, Sung-Jun;Lee, Young-Kyu
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.15-20
    • /
    • 2007
  • In this paper we introduce the IP3003 which provides excellent Power Factor and Total Harmonic Distortion to the power system. It is developed by Interpion Semiconductor co. LTD. However, the efficiency of power factor correction system is very difficult to analyze mathematically. In this paper, we use the numerical simulation methods for analyzing PFC systems.

  • PDF

Design and Effects of Power Factor Correction Circuit for Inverter Air-Conditioner (인버터 에어컨용 능동역률보상회로 설계 및 효과)

  • 박병욱;권경안
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.27-30
    • /
    • 1998
  • In this paper, the inverter air-conditioner with Power Factor Correction(PFC) circuit is Presented for obtaining the good system efficiency and cost merit compared with the conventional inverter air-conditioner. The detailed design procedures for getting the optimal passive components are implemented. Through the simulation and experimental results, it is shown that the system efficiency can be improved. Using the designed components, the prototype system is builted and tested to verify the additional good performances of the proposed circuit.

  • PDF

Deadbeat Controller Design of a ZCS-type Power Factor Correction Circuit(QBSRR) (ZCS형 역률 개선 회로(QBSRR)의 데드빗(deadbeat)제어기 설계)

  • 최현칠
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.2
    • /
    • pp.107-117
    • /
    • 1998
  • In this paper, a deadbeat controller design technique is developed for the recently introduced PFC(Power Factor Correction) circuit named as a QBSRR(Quantum Boost Series Resonant Rectifier) to achieve the fast dynamic responses of the output voltage in the presense of any load variations. And, in order to monitor the load information without employing the current sensor, the load estimation method is also derived. By using the information of the load estimation method, the proposed controller gain is automatically adjusted to have the system always keep the very fast dynamic responses. To verify these superior performances, the simulation and the experiment are carried out.

Direct and indirect methods for determination of mode I fracture toughness using PFC2D

  • Sarfarazi, Vahab;Haeri, Hadi;Shemirani, Alireza Bagher
    • Computers and Concrete
    • /
    • v.20 no.1
    • /
    • pp.39-47
    • /
    • 2017
  • In this paper, mode I fracture toughness of rock was determined by direct and indirect methods using Particle Flow Code simulation. Direct methods are compaction tension (CT) test and hollow centre cracked quadratic sample (HCCQS). Indirect methods are notched Brazilian disk (NBD) specimen, the semi-circular bend (SCB) specimen, hollow centre cracked disc (HCCD), the single edge-notched round bar in bending (SENRBB) specimen and edge notched disk (END). It was determined that which one of indirect fracture toughness values is close to direct one. For this purpose, initially calibration of PFC was undertaken with respect to data obtained from Brazilian laboratory tests to ensure the conformity of the simulated numerical models response. Furthermore, the simulated models in five introduced indirect tests were cross checked with the results from direct tests. By using numerical testing, the failure process was visually observed. Discrete element simulations demonstrated that the macro fractures in models are caused by microscopic tensile breakages on large numbers of bonded discs. Mode I fracture toughness of rock in direct test was less than other tests results. Fracture toughness resulted from semi-circular bend specimen test was close to direct test results. Therefore semi-circular bend specimen can be a proper test for determination of Mode I fracture toughness of rock in absence of direct test.

Simulating the influence of pore shape on the Brazilian tensile strength of concrete specimens using PFC2D

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming;Marji, Mohammad Fatehi
    • Computers and Concrete
    • /
    • v.22 no.5
    • /
    • pp.469-479
    • /
    • 2018
  • The Brazilian tensile strength of concrete samples is a key parameter in fracture mechanics since it may significantly change the quality of concrete materials and their mechanical behaviors. It is well known that porosity is one of the most often used physical indices to predict concrete mechanical properties. In the present work the influence of porosity shape on concrete tensile strength characteristics is studied, using a bonded particle model. Firstly numerical model was calibrated by Brazilian experimental results and uniaxial test out puts. Secondly, Brazilian models consisting various pore shapes were simulated and numerically tested at a constant speed of 0.016 mm/s. The results show that pore shape has important effects on the failure pattern. It is shown that the pore shape may play an important role in the cracks initiation and propagation during the loading process which in turn influence on the tensile strength of the concrete samples. It has also been shown that the pore size mainly affects the ratio of uniaxial compressive strength to that of the tensile one in the simulated material samples.