• Title/Summary/Keyword: PFC simulation

Search Result 215, Processing Time 0.034 seconds

The Study on the One-stage PFC-flyback Converter using the Soft Switching Technique (소프트 스위칭 기법을 이용한 1단 PFC-flyback 컨버터)

  • Lee, Sang-Hyeok;Hwang, Jung-Goo;Park, Sung-Jun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.263-269
    • /
    • 2013
  • The flyback converter has been applied widely in isolated DC/DC power converters because this converters employ a single MOSFET switch. The leakage inductance should be minimized for high efficiency of flyback converter. but in reality, it is very difficult. Namely, The Snubber circuit is essential to recover the leakage inductance stored energy when the switch is turn off. Flyback Converter typically operates in DCM mode and when switch is turn off in hard switching, this hard switching action results in a high power losses and switching stresses. In order to overcome these problems, a novel soft switching flyback converter using resonant snubber circuit is proposed in this paper. The resonant snubber circuit is composed of the transformer leakage inductance and a capacitor. To verify and confirm the proposed resonant snubber circuit, PSIM simulation and hardware prototype are implemented. Simulation and Experimental results indicate that the proposed resonant snubber circuit is effective.

Numerical simulation of tensile failure of concrete using Particle Flow Code (PFC)

  • Haeri, Hadi;Sarfarazi, Vahab
    • Computers and Concrete
    • /
    • v.18 no.1
    • /
    • pp.39-51
    • /
    • 2016
  • This paper considers the tensile strength of concrete samples in direct, CTT, modified tension, splitting and ring tests using both of the experimental tests and numerical simulation (particle flow code 2D). It determined that which one of indirect tensile strength is close to direct tensile strength. Initially calibration of PFC was undertaken with respect to the data obtained from Brazilian laboratory tests to ensure the conformity of the simulated numerical models response. Furthermore, validation of the simulated models in four introduced tests was also cross checked with the results from experimental tests. By using numerical testing, the failure process was visually observed and failure patterns were watched to be reasonable in accordance with experimental results. Discrete element simulations demonstrated that the macro fractures in models are caused by microscopic tensile breakages on large numbers of bonded discs. Tensile strength of concrete in direct test was less than other tests results. Tensile strength resulted from modified tension test was close to direct test results. So modified tension test can be a proper test for determination of tensile strength of concrete in absence of direct test. Other advantages shown by modified tension tests are: (1) sample preparation is easy and (2) the use of a simple conventional compression press controlled by displacement compared with complicate device in other tests.

Compressive Fracture Behaviors of Transversely Isotropic Jointed Rock Model with an Opening (공동을 포함하는 횡등방성 절리암반 모델의 압축 파괴거동)

  • SaGong, Myung;Kim, Se-Chul;Yoo, Jea-Ho;Park, Du-Hee;Lee, J.S.
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.58-63
    • /
    • 2009
  • Biaxial compression test was conducted on a transversely isotropic synthetic jointed rock model for the understanding of the fracture behaviors of a sedimentary or metamorphic rocks with well developed bedding or foliation in uni-direction. The joint angles employed for the model are 30, 45, and 60 degrees to the horizontal, and the synthetic rock mass was made of early strength cement. From the biaxial compression test, initiation propagation of tensile cracks at norm to the joint angle was found. The propagated tensile cracks eventually developed rock blocks, which was dislodged from the rock mass. Furthermore, the propagation process of the tensile cracks varies with joint angle: lower joint angle model shows more stable and progressive tensile crack propagation. The experiment results were validated from the simulation by using discrete element method PFC 2D. From the simulation, as has been observed from the test, a rock mass with lower joint angle produces wider damage region and rock block by tensile cracks. In addition, a rock model with lower joint angle shows a progressive tensile cracks generation around the opening from the investigation of the interacted tensile cracks.

  • PDF

EVALUATION OF SHEAR BEHAVIOR OF LARGE GRANULAR MATERIALS WITH DIFFERENT PARTICLE SIZES BY TRIAXIAL TEST AND NUMERICAL SIMULATION

  • Kim, Bum-Joo;Sagong, Myung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09c
    • /
    • pp.55-60
    • /
    • 2010
  • Rockfill zones in CFRD consist typically of large granular materials, usually the maximum particle size up to several meters, which makes laboratory testing to determine the mechanical properties of rockfill difficult. Commonly, the design strength of the rockfills is obtained by scaling down the original rockfill materials and performing laboratory strength tests for the reduced size materials. The objective of the present study is to investigate the effect of particle size on the shear behavior and the strength for granular materials. A series of large-scale triaxial tests was conducted on large granular materials with the maximum particle size varying from 20 to 50mm. The test results showed that overall shear behaviors were similar between the samples with different particle sizes while there were slight differences in the magnitudes of the peak shear stress between the samples. In addition, a simulation of the granular material with the max. particle size of 20mm was performed using DEM code, $PFC^{2D}$, and compared with the test results. The deviatoric stress versus strain behaviors of experimental and numerical tests were found to be matched well up to the peak stress state.

  • PDF

Design and Analysis of High-order Active Input Filter for Power Factor Correction(PFC) Converter (역률 개선 컨버터용 고차 능동 필터의 설계 및 분석)

  • Lee, Dong-Young;Cho, Bo-Hyung
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.259-261
    • /
    • 1996
  • In this paper, active input filter for power factor correction(PFC) circuit employing ripple arrent and voltage cancellation is proposed to reduce filter's size and cost, and to make filter design easy. Switching ripple current and voltage can be sensed through the secondary windings of filter inductor. Single stage passive filter can achieve high order filter characteristics by using active ripple current and voltage cancellation technique. Conventional high order passive filter and its problems are suggested. Analysis of active filter and design procedure are detailed. Simulation result is presented to verify high order filter characteristics of proposed scheme.

  • PDF

Comparative analysis of power factor correction circuit using Feedforward (Feedforward제어 방식을 이용한 역률개선회로의 비교분석)

  • Kim, Cherl-Jin;Jang, Jun-Young;Yoo, Byeong-Kyu;Lee, Dal-Eun;Baek, Soo-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.187-189
    • /
    • 2003
  • Conventional Switched Mode Power Supplies(SMPS) with diode-capacitor rectifier have distorted input current waveform with high harmonic content. Typically, these SMPS have a power factor lower than 0,65. To improve with this problem the power factor correction(PFC) circuit of power supplies has to be introduced. Specially. to the reduce size and manufacture cost of power conversion device, the single-stage PFC converter is increased to demand as necessary of study. in this paper, The comparative analysis of power factor correction circuit using Feedforward control with average current mode flyback converter(single-stage) and boost converter(two-stage). Also, the validity of designed and manufactured high power factor flyback converter and boost converter is confirmed by simulation and experimental results.

  • PDF

A PSpice Modeling of PFC Circuit Using Soft-Switched Boost Converter

  • Mok, H.S.;Choe, G.H.;Jeong, S.E.;Choi, J.Y.
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.393-399
    • /
    • 1997
  • Single-phase and three-phase AC to DC power converters are becoming frequently used for high voltage/high power applications such as telecommunications. They often require input/output transformer isolation for safety, a unity input power factor for minimum reactive power, free input harmonic currents fed back to the AC Power distribution system and, finally, high efficiency and high power density for minimum weight and volume. The proposed boost converter for power factor correction (PFC) provides an unity input power factor, low harmonic distortion and high efficiency along with reduced volume and weight. Single-phase 220VAC input/380VDC 1KW output prototype is constructed and experimental results will be verified with those of PSpice simulation.

  • PDF

The design of efficient Power system for AC PDP (AC PDP 에 효율적인 전원시스템의 설계)

  • Park H.W.;Ahn S.H.;Kang F.S.;Chung C.G.;Kim C.U.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.121-124
    • /
    • 2003
  • In this paper, a novel PFC AC / DC converter is presented to be appropriate for AC PDP's power driving system. The conventional PFC AC / DC converter has independent power stages and controllers for their switching respectively, which should have increased price, size on manufacturing and decreased its efficiency as well. So this advanced Single-Stage Power Factor Corrector is presented and verified through spice simulation.

  • PDF

A Study on the PFC(Power Factor Correction) boost converter applied Flying Capacitor Snubber. (Flying Capacitor Snubber를 적용한 PFC(Power Factor Correction) Boost 컨버터에 관한 연구)

  • Kim B.C.;Lee H.S.;Seo J.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.77-80
    • /
    • 2003
  • Switching Mode Power Supply(SMPS) is widely used in many industrial fields. Power factor improvement and harmonic reduction technique are very important in SMPS. In this paper, we propose the circuit applied Flying Capacitor Snubber for improving power factor of boost converter on fast switching state. Snubber circuit consists of a inductor, two diodes and a capacitor. The losses of switching are reduced by inserting a snubber inductor in the series path of the boost switch and the rectifier diode to control the di/dt rate of the rectifier during it's turn-off. Prior to actual experiment, the circuit analysis Is implemented by PSPICE simulation.

  • PDF

Direct Power Sensorless Control of Three-Phase AC/DC PFC PWM Converter using Virtual Flux Observer (가상 자속관측기를 이용한 3상 AC/DC PFC PWM 컨버터의 직접 전력 센서리스 제어)

  • Kim, Young-Sam;Kwon, Young-Ahn
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.10
    • /
    • pp.1442-1447
    • /
    • 2012
  • In this paper, direct power control system for three-phase PWM AC/DC converter without the source voltage sensors is proposed. The sinusoidal input current and unity effective power factor are realised based on the estimated flux in the observer. Both active and reactive power calculated using estimated flux. The estimation of flux is performed based on the Reduced-order flux observer using the actual currents and the command control voltage. The source voltage sensors are replaced by a flux estimator. The active and reactive powers estimation are performed based on the estimated flux and Phase anble. The proposed algorithm is verified through simulation and experiment.