• 제목/요약/키워드: PFC Inductor

검색결과 91건 처리시간 0.021초

Comparative Analysis of Current Controls for Boost PFC Converter under Light Load

  • Juil Kim;Yeong-Jun Choi
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권6호
    • /
    • pp.143-151
    • /
    • 2024
  • 본 논문은 부스트 PFC (Power Factor Correction) 컨버터의 경부하시, 컨버터의 인덕터 전류 왜곡을 수학적으로 분석하고 원인을 정의한다. 경부하시 평균 전류 모드제어에서 인덕터 전류가 불연속적으로 도통하게 되어 부정확한 인덕터 전류 평균값이 전류 제어에 반영된다. 예측 전류 모드제어에서는 인덕터 전류에 비해 전류 리플이 상대적으로 커져 전류 왜곡이 심해진다. 또한 모델 예측 전류제어의 경우 인덕터 전류의 첨두치 부근에서 스위치가 OFF된다. 인덕터 전류 왜곡은 total harmonic distortion 증가와 역률 감소를 유발하기 때문에 반드시 해결되어야 한다. 본 논문은 수학적 분석을 기반으로 부스트 PFC 컨버터의 경부하시 전류 왜곡을 완화할 수 있는 설계 절차를 선정한다. 마지막으로 hardware-in-the-loop simulation을 사용하여 경부하시 제어 방법들을 비교분석했다.

인덕터 전류검출이 필요없는 불연속모드 인터리브드 PFC 부스트 컨버터의 연구 (Study of DCM Interleaved Boost PFC Converter without the Detection of the Inductor Current)

  • 나재두
    • 전기학회논문지P
    • /
    • 제65권4호
    • /
    • pp.303-308
    • /
    • 2016
  • A light-emitting diode (LED) has been increasingly applied to various industrial fields and general lightings because of its high efficiency, low power consumption, environment-friendly characteristic and long lifetime. To drive this LED lighting, various types of power converters have been applied. Also, power factor correction (PFC) techniques play an important role in the power supply technology. In this paper, design and control of a DCM interleaved boost PFC converter is discussed. The proposed converter can reduce current ripples at input and output side by cancelling an each phase of inductor currents. Since the IC does not require the auxiliary winding of inductor for current detection, simple PFC circuit is achieved. Therefore, it contributes to increase efficiency and downsize the whole system volume, cost. Also, the performance of the proposed system is demonstrated through experiments.

A method for inductor design to improve efficiency in PFC boost converter

  • Liang, Dong;Kang, Woong-Jae;Shin, Hwi-Beom
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2017년도 전력전자학술대회
    • /
    • pp.1-2
    • /
    • 2017
  • In this paper a method is proposed to optimize the inductor design of PFC boost converter with maximum efficiency at rated load. The variables of switching frequency, the number of turns, core size and permeability are selected to improve the efficiency. The experimental result shows the proposed inductor design method can lead a higher efficiency when compared with the typical inductor design method.

  • PDF

병렬 연결된 두 개의 Interleaved CrM Boost PFC 컨버터의 부하 공유 방법 (A Load Sharing Method of Parallel-connected Two Interleaved CrM Boost PFC Converters)

  • 김문영;강신호;강정일;한종희
    • 전력전자학회논문지
    • /
    • 제26권1호
    • /
    • pp.53-58
    • /
    • 2021
  • Operation of the interleaved Boost PFC converter in Critical Conduction Mode (CrM) shows the advantages of high efficiency and good EMI characteristics owing to the valley switching of FET. However, when it is designed for a highly pulsating load, operation at a relatively high frequency is inevitable at non-pulsating typical load condition, resulting in efficiency degradation. Moreover, the physical size of the inductor becomes problematic because of the nature of the CrM operation, where the inductor peak current is about two times the inductor average current, thereby requiring high DC-bias characteristics, which is worse when the output power is high. In this study, a new parallel driving method of two sets of interleaved boost PFC converters for highly pulsating high-power application is proposed. The proposed method does not require any additional load-sharing controller, resulting in high efficiency and smaller inductor size.

Passive Lossless Snubbers Using the Coupled Inductor Method for the Soft Switching Capability of Boost PFC Rectifiers

  • Kim, Ho-Sung;Baek, Ju-Won;Ryu, Myung-Hyo;Kim, Jong-Hyun;Jung, Jee-Hoon
    • Journal of Power Electronics
    • /
    • 제15권2호
    • /
    • pp.366-377
    • /
    • 2015
  • In order to minimize switching losses for high power applications, a boost PFC rectifier with a novel passive lossless snubber circuit is proposed. The proposed lossless snubber is composed of coupled inductors merged into a boost inductor. This method compared with conventional methods does not need additional inductor cores and it reduces extra costs to implement a soft switching circuit. Especially, the proposed circuit can reduce the reverse recovery current of output diode rectifiers due to the coupling effect of the inductor. During turn-on and turn-off operating modes, the proposed PFC converter operates under soft switching conditions with high power conversion efficiency. In addition, the performance improvement and analysis of the operating effects of the coupled inductors were also presented and verified with a 3.3 kW prototype rectifier.

PFC용 Boost 컨버터의 금속분말 인덕터에 관한 연구 (A Study on the Metal Powder Inductor of a Boost Converter for PFC)

  • 김윤성;안태영;장평우;정인범;최광보
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 전력전자학술대회 논문집
    • /
    • pp.368-371
    • /
    • 2001
  • In this paper, the experiment and simulation results of the Boost converter for PFC(power factor correction) using metal powder inductor are presented. The metal powder inductor used in the experiment was composed of Ni-Fe-Mo, Ni-Fe, Fe-Si-Al compound respectively The performance of the 500w class PFC rectifier with the average current mode control and the 300W class PFC rectifier with the variable frequency control, are evaluated.

  • PDF

A Novel Predictive Digital Controlled Sensorless PFC Converter under the Boundary Conduction Mode

  • Wang, Jizhe;Maruta, Hidenori;Matsunaga, Motoshi;Kurokawa, Fujio
    • Journal of Power Electronics
    • /
    • 제17권1호
    • /
    • pp.1-10
    • /
    • 2017
  • This paper presents a novel predictive digital control method for boundary conduction mode PFC converters without the need for detecting the inductor current. In the proposed method, the inductor current is predicted by analytical equations instead of being detected by a sensing-resistor. The predicted zero-crossing point of the inductor current is determined by the values of the input voltage, output voltage and predicted inductor current. Importantly, the prediction of zero-crossing point is achieved in just a single switching cycle. Therefore, the errors in predictive calculation caused by parameter variations can be compensated. The prediction of the zero-crossing point with the proposed method has been shown to have good accuracy. The proposed method also shows high stability towards variations in both the inductance and output power. Experimental results demonstrate the effectiveness of the proposed predictive digital control method for PFC converters.

Single-Stage Half-Bridge Electronic Ballast Using a Single Coupled Inductor

  • Cho, Yong-Won;Kwon, Bong-Hwan
    • Journal of Power Electronics
    • /
    • 제12권5호
    • /
    • pp.699-707
    • /
    • 2012
  • This paper proposes a single-stage half-bridge electronic ballast with a high power factor using only a single coupled inductor. Compared to conventional high power factor electronic ballasts, the proposed ballast is a simpler circuit with a low cost and a high reliability. The proposed ballast is made up of a power-factor-correction (PFC) circuit and a self-oscillating class-D inverter. The PFC and inverter stages of the proposed ballast are simplified by sharing only a single coupled inductor and two common switches. The proposed PFC circuit can achieve a high power factor and low voltage stresses of the switches. A saturable transformer in the self-oscillating class-D inverter determines the switching frequency of the ballast. Experimental results obtained on a 30W fluorescent lamp are discussed.

Investigation and Implementation of a Passive Snubber with a Coupled-Inductor in a Single-Stage Full-Bridge Boost PFC Converter

  • Meng, Tao;Ben, Hongqi;Li, Chunyan;Wei, Guo
    • Journal of Power Electronics
    • /
    • 제13권2호
    • /
    • pp.206-213
    • /
    • 2013
  • In this paper, an improved passive snubber is investigated in a single-phase single-stage full-bridge boost power factor correction (PFC) converter, by which the voltage spike across primary side of the power transformer can be suppressed and the absorbed energy can be transferred to the output side. When compared with the basic passive snubber, the two single-inductors are replaced by a coupled-inductor in the improved snubber. As a result, synchronous resonances in the snubber can be achieved, which can avoid the unbalance of the voltage and current in the snubber. The operational principle of the improved passive snubber is analyzed in detail based on a single-phase PFC converter, and the design considerations of both the snubber and the coupled-inductor are given. Finally, a laboratory-made prototype is built, and the experimental results verify the feasibility of the proposed method and the validity of the theoretical analysis and design method.

밸리 필 회로 및 부스팅 인덕터를 이용한 LED 구동회로의 역률 개선 (Power factor improvement of LED driver using Valley-fill circuit and a Boosting Inductor)

  • 박종연;이학범;유진완
    • 산업기술연구
    • /
    • 제31권A호
    • /
    • pp.103-107
    • /
    • 2011
  • In this paper, a method is proposed to improve power factor and the input current THD in LED driver circuit. The researched circuit consists of a valley-fill circuit and boosting inductor and a Buck converter. Valley-fill circuit is a passive PFC and simplified structure, the buck converter is operated with current feedback. The switching frequency is 50KHz in LED driver circuit and LED forward current is constant. A valley-fill type PFC circuit for LED driver(15Watt) has been implemented, and the validity of proposed method is shown by is simulation and experimental result.

  • PDF