• Title/Summary/Keyword: PF Heat Exchanger

Search Result 16, Processing Time 0.021 seconds

Analysis of R410A refrigerant distribution in parallel flow heat exchanger (PF열교환기에서 R410A 냉매분배의 영향)

  • Kim, Jeong-Sik;Kim, Nae-Hyun
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.340-345
    • /
    • 2008
  • A computer program, which simulates the parall flow evaporator was developed. The program was having used to simulate the sample $650\;mm{\times}190\;mm$ frontal area, 25 mm flow depth and 3.0 mm fin pitch. It was shown that the cooling capacity of 3kW could be available from the sample. The present model, however, does not consider refrigerant mal-distribution in each pass, which is known to reduce the cooling capacity of the parallel flow heat exchanger.

  • PDF

Cooling Performance of Cooling Tower-Assisted Ground-Coupled Heat Pump (GCHP) System Applied in Hospital Building (병원 건물에 설치된 냉각탑 병용 지열 히트펌프 시스템의 냉방 성능)

  • Sohn, Byonghu;Lee, Doo-Young;Min, Kyung-Chon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.12 no.1
    • /
    • pp.7-16
    • /
    • 2016
  • This paper presents the measurement and analysis results for the cooling performance of ground-coupled heat pump (GCHP) system using a cooling tower as a supplemental heat rejector. In order to demonstrate the performance of the hybrid approach, we installed the monitoring equipments including sensors for measuring temperature and power consumption, and measured operation parameters from May 1 to October 30, 2014. The results showed that the entering source temperature of brine returning from the ground heat exchanger was in a range of design target temperature. Leaving load temperatures to building showed an average value of $11.4^{\circ}C$ for cooling season. From the analysis, the daily performance factor (PF) of geothermal heat pumps ranged from 4.4 to 5.2, while the daily PF of hybrid GCHP system varied from 3.0 to 4.0 over the entire cooling season.

Effect of Inclination Angle on the Heat Transfer and Pressure Drop Characteristics of Parallel Flow Heat Exchanger (경사각이 PF 열교환기의 열전달 및 압력 손실에 미치는 영향)

  • Kim, Do-Young;Ham, Jung-Ho;Kim, Nae-Hyun;Park, Nae-Hyun;Hwang, Jun-Hyun
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.222-228
    • /
    • 2007
  • The effect of inclination angle on the heat transfer and pressure drop characteristics of brazed aluminum heat exchangers is experimentally investigated. Three samples having different fin pitches (1.25, 1.5 and 2.0 mm) were tested. Results show that heat transfer coefficient is not affected by the inclination angle. However, the friction factor increases as the inclination angle increases with negligible difference between the forward and backward inclination. Both the heat transfer coefficient and the friction factor are the smallest at $P_f$=1.5mm, followed by $P_f$=2.0mm and 1.25mm. Possible explanation is provided considering the louver layout. Comparison with existing correlations is also mad.

  • PDF

The Effect of refrigerant pass & distribution in aluminum parallel flow heat exchanger (알루미늄 평행류 열교환기에서 냉매패스와 분배량 변화의 영향)

  • Kim, Jeong-Sik;Kim, Nae-Hyun;Kim, Kwang-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3546-3552
    • /
    • 2009
  • In this study, an analysis code was created for a 190*650*25-mm (W*H*D) parallel-flow evaporator, and research was done on how to increase the heat transfer rate of aluminum PF heat exchanger for application in IDU. After varying the R410A refrigerant up-down flow to two and three passes and the distribution ratio to 1:1:1 and 1:2:2, it was determined that the two-pass flow has a 30% higher partial heat transfer rate and a 25% lower heat transfer coefficient compared to the three-pass flow. As for the distribution ratios of the three-pass flow, 1:1:1 was found to have a lower refrigerant pressure loss than 1:2:2 distribution. It was assumed, though, that the refrigerant distribution had a uniform flow and that its value was thus overestimated in the actual case of maldistribution in each pass.

Cooling Performance Analysis of Ground-Source Heat Pump System with Capacity Control with Outdoor Air Temperature (외기 온도 제어 방식을 적용한 지열 히트펌프 시스템의 냉방 성능 분석)

  • Sohn, Byonghu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.4
    • /
    • pp.68-78
    • /
    • 2021
  • In order to solve the increasing deterioration of the energy shortage problem, ground-source heat pump (GSHP) systems have been widely installed. The control method is a significant component for maintaining the long-term performance and for reducing operation cost of GSHP systems. This paper presents the measurement and analysis results of the cooling performance of a GSHP system using capacity control with outdoor air temperature. For this, we installed monitoring equipments including sensors for measuring temperature, flow rate and power consumption, and then monitored operation parameters from July 9, 2021 to October 2, 2021. From measurement results, we analyze the effect of capacity control with outdoor air temperature on the cooling performance of the system. The average performace factor (PF) of the heat pump was 6.95, while the whole system was 5.54 over the measurement period. Because there was no performance data of the existing GSHP system, it was not possible to directly compare the existing control method and the outdoor air temperature method. However, it is expected that the performance of the entire system will be improved by adjusting the temperature of cold water produced by the heat pump, that is, the temperature of cold water on the load side according to the outside air temperature.

Experimental study for the pressure drop of R-22 and R-4O7C during the condensation in the micro-fin tubes (마이크로핀관내에서 R-22와 R-4O7C의 응축압력강하 특성에 관한 실험적 연구)

  • Roh, Geon-Sang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.715-722
    • /
    • 2007
  • Experiments were conducted for the investigation of pressure drop inside horizontal micro-fin tubes during the condensation of R-22 and ternary refrigerant. R-407C(HFC-32/125/134a 23/25/62 wt%) as a substitute of R-22. The condenser is a double-tube and counterflow type heat exchanger which is consisted with micro-fin tubes having 60 fins with a length of 4000mm, outer diameter of 9.53mm and fin height of 0.2mm. The mass velocity varied from 102.1 to $301.0kg/(m^2{\cdot}s)$ and inlet quality was fixed as 1.0. From the experimental results. the pressure drop for R-407C was considerably higher than that for R-22. The value of PF(penalty factor) for both of refrigerants was not bigger than the ratio of micro-fin tube area to smooth tube area. Based on the experimental data. correlation was Proposed for the prediction of frictional pressure drop during the condensation of R-22 and R-407C inside horizontal micro-fin tubes.