• Title/Summary/Keyword: PF (Particle Filtering) Method

Search Result 4, Processing Time 0.017 seconds

A Survey on Prognostics and Comparison Study on the Model-Based Prognostics (예지기술의 연구동향 및 모델기반 예지기술 비교연구)

  • Choi, Joo-Ho;An, Da-Wn;Gang, Jin-Hyuk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.11
    • /
    • pp.1095-1100
    • /
    • 2011
  • In this paper, PHM (Prognostics and Health Management) techniques are briefly outlined. Prognostics, being a central step within the PHM, is explained in more detail, stating that there are three approaches - experience based, data-driven and model based approaches. Representative articles in the field of prognostics are also given in terms of the type of faults. Model based method is illustrated by introducing a case study that was conducted to the crack growth of the gear plate in UH-60A helicopter. The paper also addresses the comparison of the OBM (Overall Bayesian Method), which was developed by the authors with the PF (Particle Filtering) method, which draws great attention recently in prognostics, through the study on a simple crack growth problem. Their performances are examined by evaluating the metrics introduced by PHM society.

Multi-sensor Single Maneuvering Target Tracking in Clutter using AMMPF (클러터를 고려한 다중 센서 환경에서의 AMMPF를 이용한 기동 표적 추적 알고리즘 연구)

  • Kim Da-Sol;Song Taek-Lyul;Oh Won-Chun
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.479-482
    • /
    • 2004
  • In this article we consider a single maneuvering target Tracking algorithm in the presence of missing measurements and high clutter environments for multi-sensor target tracking problem. The tracking algorithm is based on the Particle filtering method to predict and update target states. Proposed is the AMM-PF(Auxiliary Multiple Model Particle Filter)[2] method for maneuvering target tracking to improve performance in track estimate and maintenance with a high level of uncertainty. The algorithm we propose is compared to the Extended Kalman Filter(EKF). A simulation study is included.

  • PDF

An improved regularized particle filter for remaining useful life prediction in nuclear plant electric gate valves

  • Xu, Ren-yi;Wang, Hang;Peng, Min-jun;Liu, Yong-kuo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2107-2119
    • /
    • 2022
  • Accurate remaining useful life (RUL) prediction for critical components of nuclear power equipment is an important way to realize aging management of nuclear power equipment. The electric gate valve is one of the most safety-critical and widely distributed mechanical equipment in nuclear power installations. However, the electric gate valve's extended service in nuclear installations causes aging and degradation induced by crack propagation and leakages. Hence, it is necessary to develop a robust RUL prediction method to evaluate its operating state. Although the particle filter(PF) algorithm and its variants can deal with this nonlinear problem effectively, they suffer from severe particle degeneracy and depletion, which leads to its sub-optimal performance. In this study, we combined the whale algorithm with regularized particle filtering(RPF) to rationalize the particle distribution before resampling, so as to solve the problem of particle degradation, and for valve RUL prediction. The valve's crack propagation is studied using the RPF approach, which takes the Paris Law as a condition function. The crack growth is observed and updated using the root-mean-square (RMS) signal collected from the acoustic emission sensor. At the same time, the proposed method is compared with other optimization algorithms, such as particle swarm optimization algorithm, and verified by the realistic valve aging experimental data. The conclusion shows that the proposed method can effectively predict and analyze the typical valve degradation patterns.

Hybrid Approach-Based Sparse Gaussian Kernel Model for Vehicle State Determination during Outage-Free and Complete-Outage GPS Periods

  • Havyarimana, Vincent;Xiao, Zhu;Wang, Dong
    • ETRI Journal
    • /
    • v.38 no.3
    • /
    • pp.579-588
    • /
    • 2016
  • To improve the ability to determine a vehicle's movement information even in a challenging environment, a hybrid approach called non-Gaussian square rootunscented particle filtering (nGSR-UPF) is presented. This approach combines a square root-unscented Kalman filter (SR-UKF) and a particle filter (PF) to determinate the vehicle state where measurement noises are taken as a finite Gaussian kernel mixture and are approximated using a sparse Gaussian kernel density estimation method. During an outage-free GPS period, the updated mean and covariance, computed using SR-UKF, are estimated based on a GPS observation update. During a complete GPS outage, nGSR-UPF operates in prediction mode. Indeed, because the inertial sensors used suffer from a large drift in this case, SR-UKF-based importance density is then responsible for shifting the weighted particles toward the high-likelihood regions to improve the accuracy of the vehicle state. The proposed method is compared with some existing estimation methods and the experiment results prove that nGSR-UPF is the most accurate during both outage-free and complete-outage GPS periods.