• Title/Summary/Keyword: PET fibers

Search Result 161, Processing Time 0.032 seconds

Electrospinning Application for Production of Nano-type PET Fibers (나노형 폴리에스테르섬유 제조에 있어 전기방사의 응용)

  • Shin, Jung-Hee;Lee, Seung-Goo;Joo, Chang-Whan
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2002.04a
    • /
    • pp.173-176
    • /
    • 2002
  • With the introduction of high-tech industries, these days textile products used as advanced materials of semiconductor, transport and medical fields. It was concerned with environmental problem in textile industry lately. So the problem is receiving careful study for high effectiveness and high efficiency of filter media made by nonwoven fabric to get rid of a pollutant. PET filter media produced from conventional methods can not precisely filtrate small particles, because conventional PET filter media has too large pore size. (omitted)

  • PDF

Effect of Graft Copolymerization Conditions on Grafting Yield of AA and MA onto Polyester Fiber

  • Park, Myung-Ja
    • The International Journal of Costume Culture
    • /
    • v.6 no.2
    • /
    • pp.134-146
    • /
    • 2003
  • Polyester of linear homopolymer poly(ethylene terephthalate)(PET) was chemically modified through the formation of branched copolymer to improve the undesirable properties of fiber. Photo-induced graft copolymerization of the acrylic monomers acrylic acid (AA) and methyl acrylate (MA) in the liquid and vapor phase, respectively, onto N,N-dimetylformamide (DMF)-pretreated PET fibers was carried out. The effect of various synthesis conditions and DMF pretreatment of the PET on the graft yield was investigated. Grafting mechanism was analysed. The grafting was promoted by increasing DMF pretreatment temperature and amount of DMF retention in the fiber. The increasing biacetyl and monomer flow time, and irradiation time enhanced the grafting up to a certain amount and thereafter it decreased.

  • PDF

Studies on the Treatment of Weight Loss of PET Fibers by Alkyldimethylbenzylammonium Chlorides (알킬디메틸벤질암모늄 클로라이드에 의한 PET섬유의 감량가공에 관한 연구)

  • Park, Hong-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.29-33
    • /
    • 1993
  • n-Octyldimethylbenzylammonium chloride, dodecyldimethylbenzylammonium chloride, and octadecyldimethylbenzylammonium chloride were synthesized to be used as the accelerating weight loss agent. These synthesized compounds were used for the weight loss treatment of PET textile with sodium hydroxide. From the treatments, it was found that the lower carbon number of high alkyl group existed in quaternary ammonium salts, the better effect of weight loss was acquired. The proper concentration of accelerating weight loss agent was $8{\sim}10g/l$, the proper treatment time was $60{\sim}90$ minutes, the proper treating bath ratio was 1 : 50. It is proved that n-octyldimethylbenzylammonium chloride and dodecyldimethylbenzylammonium chloride are good accelerating weight loss agent.

Study on Decomposition Reactions of Poly(ethylene terephthalate) Films Treated with Mono-sodium Ethylene Glycolate (Mono-sodium ethylene glycolate에 의한 Poly(ethylene terephthalate) Film의 분해반응에 관한 연구)

  • Cho, Hwan;Huh, Man-Woo;Cho, In-Sul;Cho, Kyu-Min;Yoon, Hung-Soo
    • Textile Coloration and Finishing
    • /
    • v.2 no.3
    • /
    • pp.26-35
    • /
    • 1990
  • This study was carried out with the view of fundamental investigating to improve the tactile and the hygroscopicity of Poly(ethylene Terephthalate) (PET)fibers. Mono-sodium ethylene glycolate in ethylene glycol (MSEG-EG) solution was prepared and PET films were treated with it. The following conclusions were obtained. When PET films were decomposed in MSEG-EG solution, decomposition rate constant showed an exponential relationship with treating temperature; activition energy was 23.30 Kcal/mol, activation enthalpy was 22.52~22.60 Kcal/mol and activation entropy was -29.20~ -29.41 e.u. On the basis of the results obtained above and structure identification of decomposition products, it was found that the decomposition reaction proceeded through ester interchange reaction.

  • PDF

Moisture Transmission Characteristics of Fabric for High Emotional Garments -Moisture Transmission Characteristics according to Fiber Properties, Yarn Characteristics and Test Method- (고감성 의류용 직물의 수분이동특성 -섬유소재와 실 특성 및 실험방법에 따른 수분이동특성-)

  • Kim, SeungJin;Kim, Hyunah
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.1
    • /
    • pp.28-42
    • /
    • 2017
  • Moisture transfer characteristics of high emotional garments are important to evaluate wear comfort. Wicking and drying measurement methods are also critical for perspiration absorption and quick dry fabric made of high functional fibers. In this study, the wicking and drying properties of high emotional fabrics made from hybrid composite yarns using CoolMax, Tencel, Bamboo staple fibers and PP. PET CoolMax filaments were also measured and analyzed according to various measuring methods. The wicking property of hybrid composite yarn fabrics by Bireck method was mostly influenced by the structure of hybrid yarns than the absorption rate of constituent fibers; however, both the hygroscopicity of fibers and the composite yarn structure affected the wicking property of the fabrics in the drop method. Concerning drying properties, the KSK 0815B method measuring distilled moisture weight was more relevant to explain the drying characteristics of hybrid yarn fabrics than the KSK 0815A method measuring the time to drying. This study revealed that the drying properties of hybrid yarn fabrics were influenced by the hygroscopicity of constituent fibers, wicking properties of constituent yarns and structure of composite yarns.

Thermotropic Liquid Crystal Polymer or Silica Nano-particle Filled Polyester Composite Fibers

  • Kim, Seong-Hun;Kim, Jun-Young;Ahn, Seon-Hoon
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.65-66
    • /
    • 2003
  • Ternary blend fibers (TBFs) based on melt blends of PEN, PET, and TLCP were prepared by melt blending and spinning to achieve high performance fibers. The reinforcement effect and the TLCP fibrillar structure resulted in the improvement of mechanical properties for TBFs. Molecular orientation was an important factor in determining the tensile strength and modulus of TBFs. Another part of this research is silica nano-particle filled PEN composites were melt-blended to improve mechanical and physicalproperties, and processability. The tensile modulus and strength were improved adding silica nano-particles to the PEN. The decreased melt viscosity by the fumed silica resulted in the improvement of the processability. The fumed silica may act as a nucleating agent in the PEN matrix.

  • PDF

Experimental Investigation on Seismic Performance of RC Circular Columns Strengthened Using Highly-Ductile PET-AF Fiber Strand (고연성 PET-AF 스트랜드로 외부 보강한 RC 원형 기둥의 내진 성능에 관한 실험적 연구)

  • Chinzorigt, Gombosuren;Kim, So-Young;Choi, Donguk;Lim, Myung-Kwan;Lee, Chin-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.56-66
    • /
    • 2017
  • In this study, seismic strengthening performance of RC circular columns reinforced with high ductile PET and hybridized fibers(HF, PET + aramid) strand was experimentally compared and investigated. As a result, the maximum flexural strength and ductility capacity of all reinforced columns were improved than control column and fiber rupture did not occur at the ultimate stage. In addition, the resistive strength and displacement of the PET sheet 25 layers reinforcing column and the HF strand 1 layer reinforcing column were almost similar, so that 1 layer of HF strand showed the same lateral confinement effect as the PET sheet 25 layers. As a result of this experimental study, PET is considered to be suitable as seismic reinforcement material for RC structures in terms of flexural strength and ductility. However, in order to increase the possibility of application in the field, it is necessary to use a prefabricated PET sheet such as HF used in this study. The durability of PET needs investigation in the future.

Three Dimensional FEM Simulation for Spinning of Non-circular Fibers

  • Kim, Heejae;Chung, Kwansoo;Youn, Jae-Ryoun
    • Fibers and Polymers
    • /
    • v.1 no.1
    • /
    • pp.37-44
    • /
    • 2000
  • A finite element method is employed fer a flow analysis of the melt spinning process of a non-circular fiber, a PET(polyethylene terephthalate) filament. The flow field is divided into two regions of die channel and spin-line. A two dimensional analysis is used for the flow within the die channel and a three dimensional analysis fur the flow along the spin-line. The Newtonian fluid is assumed for the PET melt and material properties are considered to be constant except for the viscosity. Effects of gravitation, air drag force, and surface tension are neglected. Although the spin-line length is 4.5 m only five millimeters from the spinneret are evaluated as the domain of the analysis. Isothermal and non-isothermal cases are studied fer the flow within the die channel. The relationship between the mass flow rate and the pressure gradient is presented for the two cases. Three dimensional flow along the spin-line is obtained by assuming isothermal conditions. It is shown that changes in velocity and cross-sectional shape occur mostly in the region of 1mm from the die exit.

  • PDF

A Study on the Ultraviolet(UV)-Cut Fiber (자외선 차단 직물에 환한 연구)

  • 최인려
    • The Research Journal of the Costume Culture
    • /
    • v.11 no.6
    • /
    • pp.967-971
    • /
    • 2003
  • As the concerns over health increased in 1990's, research and development on the health material were also activated. The development of UV-cut textile became the hot issue, because the damage of W irradiation due to ozone depletion has become widely known. UV-cut effect is determined by the material, the color, the organization and the density of UV-cut fibers. UV-cut effect is very different according to the fibers. Polyester is known to have a better effect. Even in the same textile material, staple fiber has more effect than filament fiber. Different colors have different offsets. Although textiles have the same color, the effects can be different according to the depth of color. PET, PET/cotton blend, nylon and cotton fabrics were ultraviolet cutting finished with padding method using several absorbers. These UV-cut effect can be improved through the processing. Safety of UV-cut textile for the body must be considered future, Until now the figure of the UV-cut effects has been emphasized. There has been no experiment on the human body, although the textiles are directly on the human body. Futhermore there os no safety standard of UV-cut textiles. Therefore every effort will be made to set the standard UV-cut processing is established. The need of UV-cut products will be known to the consumers.

  • PDF

Inflammability Characteristics and Wear Comfort Property of Modacrylic Composite Yarn and Knitted Fabrics (난연 모다크릴 복합 방적사 니트소재의 방염성과 착용쾌적특성)

  • Kim, Hyunah
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.42 no.3
    • /
    • pp.397-410
    • /
    • 2018
  • This study investigated the flame retardant, anti-static property and wear comfort of knitted fabrics made of two kinds of composite yarns comprised of modacryl, antistatic PET, cotton and excel(R) fibers. A Low Oxygen Index (LOI) above 28 was observed in the modacryl knitted fabric specimens. The flame retardant was superior at the excel(R) fiber (including modacryl knitted fabric) than the one including cotton fiber. Anti-static properties of the modacryl knitted fabrics imbedded by 3wt% of antistatic PET fibers were observed by rubbing with wool fabric attached to the measuring apparatus, which showed a better anti-static property than the excel(R) fiber (including modacryl knitted fabric). Wear comfort indicated that quick perspiration absorption and the fast dry property of excel(R) (including modacryl knitted fabric) was better than one that included cotton fiber. Warmth keepability and breathability of the knitted fabrics indicated good results in the excel(R) (including cotton and the modacryl knitted fabrics). However, the tactile hand property of cotton fiber (including modacryl knitted fabric) was better than excel(R) fiber due to high extensibility and compressibility, and low bending and shear rigidity of the cotton fiber (including modacryl knitted fabrics).