• Title/Summary/Keyword: PET Tearing

Search Result 3, Processing Time 0.015 seconds

Methods for Suppressing Tearing of PET Coating During Forming of VCM Steel Sheet for Fabricating Washer (세탁기용 VCM 강판 성형시 PET 코팅층 찢김 저감방법)

  • Son, Young-Ki;Lee, Chan-Joo;Byeon, Sang-Doek;Kim, Myong-Dok;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.9
    • /
    • pp.1027-1033
    • /
    • 2011
  • A VCM sheet is a metal sheet on which PET/PVC is coated for outer panels of home appliances. The purpose of this study is to obtain methods for suppressing PET tearing that occurs during the press forming of the VCM sheet. In order to identity the factors that minimize PET tearing, an FE analysis was performed. The occurrence of PET tearing cannot be predicted using the conventional forming limit diagram. PET is torn by friction between a die and sheet, which is caused by the thickening of material at a die corner. To reduce the thickening of material, the blank shape was re-designed and the thickened material at a flange was removed by a trimming process. The results of the FE-analysis involving modified process parameters showed that the thickness of the product at a die corner is distributed within the clearance of drawing and flangeforming process. A forming experiment was conducted to verify the proposed process parameters. A good final product was obtained without PET tearing of the VCM sheet.

A Study on the Preparation of Durable Softening Water Repellent by Blending Acrylic Copolymer and Fatty Carbamide;Water Repelling Finish of PET Fabrics (아크릴 공중합체와 지방산 카르바미드의 블렌딩에 의한 내구유연발수제의 제조에 관한 연구;V. PET 직물에의 발수가공)

  • Im, Wan-Bin;Kim, Seong-Kil;Park, Hong-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.137-144
    • /
    • 1996
  • Durable softening water repellents such as PODCW, PDDCW, and PEDCW were prepared by blending cationized polymers, fatty carbamide, waxes, and emulsifiers. The cationized polymers included poly (octadecyl methacrylate-co-2-diethylaminoethyl methacrylate) [PODC], poly (n-dodecyl methacrylate-co-2-diethylaminoethyl methacrylate) [PDDC]and poly (2-ethylhexyl methacrylate-co-2-diethylaminoethyl methacrylate) [PEDC]. After the PET fabrics were treated with these water repellents, water repellency, softness, and durability of the PET fabrics were examined by various methods : water repellency by the hydrostatic pressure and the contact angle methods, softness by crease recovery and tearing strength, and durability by washability, respectively. Rating of water repellency of PET fabrics treated with PODCW was $80^{+}$, but those treated with PDDCW and PEDCW were not high enough to be used in industry.

Study on the Applicability of the Air Cushion Material for Impact Relief through Thermal Bonding of High Strength Fabrics (고강력 직물의 열융착 라미네이팅을 통한 충격 완화용 에어쿠션 소재로의 적용 가능성 검토 연구)

  • Kim, Ji Yeon;Kim, Hun Min;Min, Mun Hong
    • Textile Coloration and Finishing
    • /
    • v.32 no.3
    • /
    • pp.176-183
    • /
    • 2020
  • In order to study wearable air cushion materials capable of responding to massive impact in high-altitude fall situation, high tenacity woven fabrics were bonded by heat only depending on various type of thermoplastic films and then mechanical properties were measured. Tensile strength, elongation, and 100% modulus measurement results for 4 types of films show that TPU-2 has higher impact resistance and easier expansion than PET-1. After thermal bonding, the combination with the highest tensile strength was a material with a TPU-2 film for nylon and a PET-2 film for PET, so there was a difference by type of fabric. The tear strength of the bonded materials were increased compared to the fabric alone, which shows that durability against damage such as tearing can be obtained through film adhesion. All of the peel strengths exceeded the values required by automobile airbags by about 5 times, and the TPU-2 bonded fabric showed the highest value. The air permeability was 0 L/dm2 /min. For both the film and the bonded material, which means tightness between the fabric and the film through thermal bonding. It is expected to be applied as a wearable air cushion material by achieving a level of mechanical properties similar to or superior to that of automobile airbags through the method of bonding film and fabric by thermal bonding.