• Title/Summary/Keyword: PET Film

Search Result 499, Processing Time 0.033 seconds

Surface Cleaning of Polyethylene Terephthalate Film with Non-equilibrium Atmospheric Discharge Plasma

  • Sung, Youl-Moon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.2
    • /
    • pp.79-83
    • /
    • 2008
  • The dampness by treating the surface with polyethylene terephthalate (PET) film was measured to grasp the plasma parameters and was observed the surface condition with an atomic force microscope (AFM) to find the causes of the dampness. Also, the vibrational and rotational temperatures in the plasma were calculated after identifying the radicals within the plasma by analyzing the emission spectral with an emission spectrum. The hydrophilic properties were enhanced, by treating the surface of the PET film with non-equilibrium atmospheric discharge plasma. When the rotational temperature was 0.22 to 0.31 eV within the plasma, surface modification control could be easily carried out to surface treatment of PET film on non-equilibrium atmospheric pressure plasma.

Characteristics of Indium Tin Oxide Films Grown on PET Substrate Grown by Using Roll-to-Roll (R2R) Sputtering System (롤투롤 스퍼터 시스템을 이용하여 PET 기판위에 성막 시킨 ITO 박막의 특성 연구)

  • Cho, Sung-Woo;Choi, Kwang-Hyuk;Bae, Jung-Hyeok;Moon, Jong-Min;Jeong, Jin-A;Jeong, Soon-Wook;Park, No-Jin;Kim, Han-Ki
    • Korean Journal of Materials Research
    • /
    • v.18 no.1
    • /
    • pp.32-37
    • /
    • 2008
  • The electrical, optical, structural and surface properties of an indium tin oxide (ITO) film grown on a flexible PET substrate using a specially designed roll-to-roll (R2R) sputtering system as a function of the DC power, $Ar/O_2$ flow ratio, and rolling speed is reported. It was observed that both the electrical and optical properties of the ITO film on the PET substrate were critically dependent on the $Ar/O_2$ flow ratio. In addition, x-ray diffraction examination results showed that the structure of the ITO film on the PET substrate was an amorphous structure regardless of the DC power and the $Ar/O_2$ flow ratio due to a low substrate temperature, which was maintained constant by a main cooling drum. Under optimized conditions, ITO film with resistivity of $6.44{\times}10^{-4}{\Omega}-cm$ and transparency of 86% were obtained, even when prepared at room temperature. Furthermore, bending test results exhibited that R2R-grown ITO film had good flexibility which would be applicable to flexible displays and solar cells.

Surface Patterning and Characterization of Food Packaging Films Using Femtosecond Laser (펨토초 레이저를 이용한 식품포장 필름의 표면 패터닝 및 특성)

  • Youngjin Cho
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.2
    • /
    • pp.111-118
    • /
    • 2023
  • In this study, the feasibility of laser patterning on the surface of food packaging polymer film was confirmed, and the surface patterning process conditions of femtosecond laser were established. In addition, it was proved that the surface properties of the film can be changed and controlled through the fabrication of various patterned films on the surface of food packaging films such as HDPE, PP, and PET. Various patterned surfaces, including large-scale circular patterns induced by a single femtosecond laser pulse, roughness patterns achieved by overlapping single pulses by 30%, straight line patterns, roughness patterns obtained by overlapping straight line patterns, and grid patterns formed by intersecting straight line patterns were fabricated. The characteristics of the patterned HDPE, PP, and PET films, based on the surface pattern structure and size, were analyzed using SEM, AFM, and contact angle measurements. Compared to the surface of each control film without femtosecond laser patterning, the contact angles of the surfaces of large-area circular patterning HDPE and PP films, large-area roughness patterning HDPE and PP films by overlapping 30% of single pulses, and large-area roughness patterning PET film by overlapping rectilinear patterning were in the range of 27.1-37.5 degree. This indicated that the HDPE, PP, and PET films became more hydrophilic after patterning. On the other hand, the HDPE film patterned with a large-scale grid pattern exhibited a contact angle of 120.4 degree, indicating that the HDPE film became more hydrophobic after patterning. Therefore, films that have been changed to hydrophilic surfaces through patterning can be used in anti-fouling applications where proteins, cells, viruses, and other food materials do not adhere or are easily detached. In addition, if a superhydrophobic surface of 150 degrees or more is fabricated through more precise lattice patterning in the future, it will be possible to use it for superhydrophobic surface applications such as self-cleaning.

Development of the blended woven using fine-denier film fibers with alkali resistance property (내알칼리성 세데니어 필름사 제조를 통한 박지 필름 교직물의 개발)

  • Gwak, Seong-Hyeon;Park, Seong-U;Lee, Gwang-Tae;Park, Gi-Bung
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2008.10a
    • /
    • pp.143-144
    • /
    • 2008
  • We developed that the film fibers which was vacuum-metalized silver on the PET film played a part increasing durable on the alkali, antibiotic and another functional property. For this usage, PET film fibers with fine denier vacuum-metalized silver manufactured through changing the micro slitting machine's drive process.

  • PDF

Anti-corrosion Properties of SiOxCy(-H) thin Films Synthesized and Oxidized by Atmospheric Pressure Dielectric Barrier Discharge (대기압 유전체배리어방전으로 합성 및 산화 처리된 SiOxCy(-H) 박막의 부식방지 특성)

  • Kim, Gi-Taek;Kim, Yoon Kee
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.5
    • /
    • pp.201-206
    • /
    • 2020
  • A SiOxCy(-H) thin film was synthesized by atmospheric pressure dielectric barrier discharge(APDBD), and a SiO2-like layer was formed on the surface of the film by oxidation treatment using oxygen plasma. Hexamethylcyclotrisiloxane was used as a precursor for the SiOxCy(-H) synthesis, and He gas was used for stabilizing APDBD. Oxygen permeability was evaluated by forming an oxidized SiOxCy(-H) thin film on a PET film. When the single-layer oxidized SiOxCy(-H) film was coated on the PET, the oxygen gas permeability decreased by 46% compared with bare PET. In case of three-layer oxidized SiOxCy(-H) film, the oxygen gas permeability decreased by 73%. The oxygen permeability was affected by the thickness of the SiO2-like layer formed by oxidation treatment rather than the thickness of the SiOxCy(-H) film. The excellent corrosion resistance was demonstrated by coating an oxidized SiOxCy(-H) thin film on the silver-coated aluminum PCB for light emitting diode (LED).

Optimization of polymer substrate's surface treatment for improvement of transparent conducting oxide thin film (투명전도막의 특성향상을 위한 기판 표면처리법의 최적화)

  • Choi, Woo-Jin;Kim, Ji-Hoon;Jung, Ki-Young;Darma, Jessie;Choo, Young-Bae;Sung, Youl-Moon;Kwak, Dong-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1425_1426
    • /
    • 2009
  • In this study, commercially available polyethylene terephthalate(PET), which is widely used as a substrate of flexible electronic devices, was modified by dielectric barrier discharge(DBD) method in an air condition at atmospheric pressure, and aluminium - doped zinc oxide (ZnO:Al) transparent conducting film was deposited on PET substrate by r. f. magnetron sputtering method. Surface analysis and characterization of the plasma-treated PET substrate was carried out using contact angle measurements, X-ray Photoelectron Spectroscopy(XPS) and Atomic Force Microscopy (AFM). Especially the effect of surface state of PET substrate on some important properties of ZnO:Al transparent conducting film such as electrical and morphological properties and deposition rate of the film, was studied experimentally. The results showed that the contact angle of water on PET film was reduced significantly from $62^{\circ}$ to $43^{\circ}$ by DBD surface treatment at 20 min. of treatment time. The plasma treatment also improved the deposition rate and electrical properties. The deposition rate was increased almost linearly with surface treatment time. The lowest electrical resistivity as low as $4.97{\times}10^{-3}[\Omega-cm]$ and the highest deposition rate of 234[${\AA}m$/min] were obtained in ZnO:Al film with surface treatment time of 5min. and 20min., respectively.

  • PDF

난연성 폐PE/PET 복합성형체의 제조 및 특성

  • 송종혁;강영구
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2002.05a
    • /
    • pp.439-444
    • /
    • 2002
  • PET(Polyethylene terephthalate)수지는 engineering plastic으로서 film, 각종 용기 등의 소재로 널리 사용되고 있다 특히 PET의 투명성, 위생성, 내약품성, 우수한 기체 차단성, 내열성 등 우수한 물성을 이용한 음료용 PET bottle은 식음료 산업의 발전에 따라 그 사용량이 크게 증가하여 발생되는 폐기물 발생량 또한 사회문제로 대두되고 있으나 가공성의 문제로 재생원료로서의 이용이 미비한 실정이다.(중략)

  • PDF

The composition control of ITO/PET by plasma emission monitor (PEM을 이용한 ITO/PET film의 조성 제어)

  • 한세진;김용환;김영환;이택동
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.4A
    • /
    • pp.438-444
    • /
    • 1999
  • The characterization of the reactively sputtered ITO layer on the PET film has been studied. The PEM device has been used to determine the optimum stoichimetry through control of the amount of oxygen incorporated into the alloy target and the optimum operation conditions to produce films with the highest electrical conductivity and visible transparency. The PEP film was pre-treated under the plasma discharge condition to remove the adsorbed gases and to modify the surface morphology. The results revealed that by adjusting the flow rate of oxygen with the spectral intensity of indium target, the composition of plasma gas can be kept constant during the entire deposition period. The resistivity of ITO film obtained was fond to be about 37$\Omega\Box$, and the transmittance of visual range was about 86%.

  • PDF

The Preparation of Sol-Gel Derived Aminoalkoxysilane Films and its Application for Oxygen Barrier (솔-젤법을 이용한 aminoalkoxysilane 산소차단필름의 제조)

  • Kim, Hyun-Joon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.5 no.3 s.16
    • /
    • pp.17-21
    • /
    • 2006
  • The oxygen barrier films were formed on poly(ethylene terephthalate) (PET) substrate by a sol-gel process using aminoalkoxysilanes. The coating layers were characterized by FT-IR and SEM. The oxygen permeability coefficients of coating films were measured by variable volume method, and then the influences of solvent ratio in sol and film drying temperature on the oxygen barrier properties were investigated. The aminoalkoxysilane coating films exhibited much higher oxygen barrier properties than PET film. The oxygen permeability coefficient of the film coated with each of APTEOS and APTMOS was measured to be $2.96{\times}10^{-6}$ and $3.05{\times}10^{-5}\;GPU$, respectively, while that of PET film was $1.16{\times}10^{-4}\;GPU$.

  • PDF