• Title/Summary/Keyword: PET Film

Search Result 499, Processing Time 0.02 seconds

Historical Investigation on Development of Produce and Packages or Physical Analysis of Packaging's Materials of Cheese in Korea since 1967-2 (1967년 이후 한국(韓國)에서 치즈제품(製品)의 개발(開發)과 포장(包裝)의 변화(變化) 및 그 포장재(包裝材)의 생물학적(生物學的) 조사연구(調査硏究)-2)

  • Kim, Duck-Woong
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.5 no.1
    • /
    • pp.30-36
    • /
    • 1999
  • Physical analysis of some composite films of outer packaging at process cheeses in Korea is as following. In comparison with four composite films, tensile strength is $72.2{\mu}PET/PVDC/PE/AL-vac/PE\;film\;MD9.55kg/15mm,\;TD8.95kg/15mm>79.3{\mu}PET/PVDC/L-LDPE\;film\;MD5.37kg/15mm,\;TD5.01kg/15mm>96.9{\mu}PE/PVDC/PE\;film\;MD5.42kg/15mm,\;TD4.73kg/15mm>61.6{\mu}PVDC/PE/AL-vac/CPS\;film\;MD4.65kg/15mm,\;TD4.22kg/15mm$. Water vapor transmission is $72.2{\mu}PET/PVDC/PE/AL-vac/PE\;film\;0.41g/m^2{\cdot}24hr>79.3{\mu}PET/PVDC/L-LDPE\;film\;3.77g/m^2{\cdot}24hr>96.9{\mu}PE/PVDC/PE\;film\;3.81g/m^2{\cdot}24hr>61.6{\mu}PVDC/PE/AL-vac/4.91g/m^2{\cdot}24hr$. Gas transmission $O_2:N_2:CO_2$ is $72.2{\mu}PET/PVDC/PE/AL-vac/PE\;film\;1.81:0.74:4.2cc/m^2{\cdot}24hr{\cdot}atm>79.3{\mu}PET/PVDC/L-LDPE\;film\;13.4:6.4:34.2cc/m^2{\cdot}24hr{\cdot}atm>96.9{\mu}PE/PVDC/PE\;film\;15.3:7.1:42.0cc/m^2{\cdot}24hr{\cdot}atm>61.6{\mu}PVDC/PE/AL-vac/CPS\;film\;25.3:12.5:59.3cc/m^2{\cdot}24hr{\cdot}atm$ each other. And for preservation this were sealed to filths $N_2,\;CO_2$ gas or defilling ai (vacuum type) in the packaging and reserved less than $10^{\circ}C$ at refrigerator.

  • PDF

A Study on Fabrication of Polyester Copolymers (IV) - Physical Properties of PET/BPA Copolymer - (폴리에스테르 공중합체의 Fabrication 연구(IV) - PET/BPA 공중합체의 물리적 특성 -)

  • 현은재;이소화;제갈영순;장상희;최현국
    • Polymer(Korea)
    • /
    • v.25 no.2
    • /
    • pp.208-217
    • /
    • 2001
  • PET/BPA copolymer of terephthalic acid, bisphenol-A and ethylene glycol was melt-pressed and quenched in ice water. This copolymer film was drawn by capillary rheometer. Shrinkage, crystallinity, morphology, thermal, dynamic mechanical, and mechanical properties of these copolymer films were investigated. The PET/BPA copolymer film exhibited T$_{m}$ lower than that of PET film. The crystallinity and density of these drawn copolymer films increased with draw ratio and draw rate but decreased with draw temperature. The tensile strength and tensile modulus of the copolymer films increased with draw ratio but decreased with draw temperature. Shrinkage of the drawn copolymer film decreased with draw ratio and draw rate.e.

  • PDF

The Oxygen Barrier Properties of 3-aminopropyltrimethoxysilane (APTMOS) Coatings on PET Film (3-aminopropyltrimethoxysilane(APTMOS)을 코팅한 PET 필름의 산소차단성 연구)

  • Lee, Sung-Koo;Kim, Hyun-Joon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.2
    • /
    • pp.49-53
    • /
    • 2009
  • The oxygen barrier films were formed on poly(ethylene terephthalate) (PET) substrate by a sol-gel process using 3-aminoproprytrimethoxysilane (APTMOS). The effects of solvent type, coating times and incorporation of fumed silica on oxygen permeability coefficient were investigated. The APTMOS coating film prepared from methanol as a solvent exhibited higher oxygen barrier properties than that using THF. The oxygen permeability coefficient of coated film with APTMOS/methanol by coating 7 times was measured to be $2.28{\times}10^{-6}$, while that of PET film was $1.16{\times}10^{-4}$ GPU. The addition of fumed silica does not affect the oxygen barrier properties. It may be explained that silica particles disrupt chain packing, which leads to an increase in free volume for permeation.

  • PDF

Effect of Fluorination and Ultrasonic Washing Treatment on Surface Characteristic of Poly(ethylene terephthalate) (불소화 및 초음파 수세가 폴리(에틸렌 테레프탈레이트) 필름의 표면 특성에 미치는 영향)

  • Kim, Do Young;In, Se Jin;Lee, Young-Seak
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.316-322
    • /
    • 2013
  • In this study, poly(ethylene terephthalate) (PET) was treated with fluorination and ultrasonic washing treatment for hydrophilic modification of PET film. We measured the change of surface modified PET film surface characteristics using contact angle, surface free energy, FE-SEM, AFM and XPS. After direct fluorination and ultrasonic washing treatment, the water contact angle was measured to be $10.81^{\circ}$, 85% reduction compared to the untreated PET film. Total surface free energy has been measured to be $42.25mNm^{-1}$, 650% increase compared to the untreated PET film. Also RMS roughness has been measured to be 1.965 nm, 348% increase compared to the untreated PET film. Hydrophilic functional group C-OH bond concentration has increased approximately 3 times. These results are attributed to the hydrophilic functional group and cavitation due to chemical etching. From this result, it was suggested that the fluorination-ultrasonic washing treatment method could be useful to make PET film surface hydrophilic.

Preparation of Coating Film with Antibacterial and Antifogging Function on PET Substrate (PET 기재 위에 항균성과 김서림 방지 기능을 갖는 코팅 도막 제조)

  • Ho Chan Kwon;Ki Chang Song
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.439-445
    • /
    • 2023
  • In this study, silver nanoparticles were synthesized by reducing silver nitrate with PVA, and the solution prepared by adding carboxymethyl cellulose (CMC) to the silver nanoparticles was coated on a PET substrate to prepare a coating film with antibacterial and antifogging function. When the coating films were in contact with water vapor at 80 ℃, the uncoated PET substrate was blurred due to the scattering of light due to the occurrence of fog, while the coating film coated with silver nanosol with CMC remained transparent despite contact with water vapor, showing excellent antifogging function. In addition, the antibacterial properties of the coating films were measured by film adhesion method for Staphylococcus aureus, gram-positive bacteria, and Escherichia coli, gram-negative bacteria. The uncoated PET substrate showed a large number of colonies of Staphylococcus aureus and Escherichia coli, while the coating film coated with the silver nanosol greatly inhibited the growth of Staphylococcus aureus and Escherichia coli, resulting in excellent antibacterial effect.

Formation of Electromagnetic Wave Shielding Thin Film on PET Film Substrate and Their Properties (PET 필름상 형성한 전자파차폐용 박막과 그 특성)

  • Im, Gyeong-Min;Lee, Hun-Seong;Bae, Il-Yong;Mun, Gyeong-Man;Choe, Cheol-Su;Lee, Myeong-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.205-206
    • /
    • 2011
  • Cu thin films for electromagnetic wave shielding were prepared on PET film and Ni-coated PET film by using Dry and Wet coating method, such as evaporation method, DC sputtering method and copper sulfate($CuSO_4$). After that, Zn thin film and Ni thin film were prepared onto the Cu thin films by using evaporation dry process and Ni electro plating wet process as a finishing treatment, respectively. The result of conductivity test and corrosion resistance test revealed Cu thin films which were formed with bigger grain size and high Cu composition rate have superior properties. Zn thin film by dry evaporation process and Ni thin film by wet electro plating process on Cu thin films were largely contributed to corrosion resistance. However, Ni thin film by wet process made conductivity of all specimen worse, the other hand, Zn thin film by dry process made it better to improve condictivity of specimens just prepared by dry process.

  • PDF

Effect of Substrate Preheating on the Characteristics of Flexible and Transparent ITO Electrodes Grown by Roll-to-Roll Sputtering for Touch Panel Applications (기판 열처리가 롤투롤 스퍼터를 이용하여 성장시킨 터치 패널용 유연 ITO 투명 전극의 특성에 미치는 효과 연구)

  • Kim, Dong-Ju;Lee, Won-Young;Kim, Bong-Seok;Kim, Han-Ki
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.4
    • /
    • pp.327-332
    • /
    • 2010
  • We report on the effect of PET substrate preheating on the characteristics of the flexible and transparent indium tin oxide (ITO) electrode grown by a specially designed roll-to-roll sputtering system for touch panel applications. It was found that electrical and optical properties of the roll-to-roll sputter grown ITO film were critically dependent on the preheating of the PET substrate. In addition, the roll-to-roll sputter-grown ITO film after post annealing test at $140^{\circ}C$ for 90 min showed stable electrical and optical properties. The low sheet resistance and high optical transmittance of the ITO film grown on the preheated PET substrate demonstrate that the preheating process before ITO sputtering is one of the effective way to improve the characteristics of ITO/PET film. Furthermore, the superior flexibility of the ITO electrode grown on the preheated PET substrate indicates that the preheating treatment is a promising technique to obtain robust ITO/PET sample for touch panel applications.