• Title/Summary/Keyword: PET (Positron Emission Tomography)

Search Result 485, Processing Time 0.026 seconds

FDG-PET in Gynecologic Cancer (부인암에서 FDG-PET의 역할)

  • Ryu, Sang-Young
    • The Korean Journal of Nuclear Medicine
    • /
    • v.36 no.1
    • /
    • pp.46-52
    • /
    • 2002
  • Whole-body positron emission tomography (PET) imaging with 18-F deoxyglucose (FDG) is a molecular imaging modality that detects metabolic alteration in tumor cells. In various human cancers, FDG-PET shows a potential clinical benefit in screening, tumor characterization, staging, therapeutic follow-up and detecting recurrence. In gynecologic cancers, FDG-PET is also known to be effective in characterization of adnexal masses, detection of recurrence, and lymph node invasion. This review discusses the clinical feasibility and future clinical application of this imaging modality in patients with cervical cancer, ovarian cancer, and other gynecologic cancers.

Are There Any Additional Benefits to Performing Positron Emission Tomography/Computed Tomography Scans and Brain Magnetic Resonance Imaging on Patients with Ground-Glass Nodules Prior to Surgery?

  • Song, Jae-Uk;Song, Junwhi;Lee, Kyung Jong;Kim, Hojoong;Kwon, O Jung;Choi, Joon Young;Kim, Jhingook;Han, Joungho;Um, Sang-Won
    • Tuberculosis and Respiratory Diseases
    • /
    • v.80 no.4
    • /
    • pp.368-376
    • /
    • 2017
  • Background: A ground-glass nodule (GGN) represents early-stage lung adenocarcinoma. However, there is still no consensus for preoperative staging of GGNs. Therefore, we evaluated the need for the routine use of positron emission tomography/computed tomography (PET)/computed tomography (CT) scans and brain magnetic resonance imaging (MRI) during staging. Methods: A retrospective analysis was undertaken in 72 patients with 74 GGNs of less than 3 cm in diameter, which were confirmed via surgery as malignancy, at the Samsung Medical Center between May 2010 and December 2011. Results: The median age of the patients was 59 years. The median GGN diameter was 18 mm. Pure and part-solid GGNs were identified in 35 (47.3%) and 39 (52.7%) cases, respectively. No mediastinal or distant metastasis was observed in these patients. In preoperative staging, all of the 74 GGNs were categorized as stage IA via chest CT scans. Additional PET/CT scans and brain MRIs classified 71 GGNs as stage IA, one as stage IIIA, and two as stage IV. However, surgery and additional diagnostic work-ups for abnormal findings from PET/CT scans classified 70 GGNs as stage IA, three as stage IB, and one as stage IIA. The chest CT scans did not differ from the combined modality of PET/CT scans and brain MRIs for the determination of the overall stage (94.6% vs. 90.5%; kappa value, 0.712). Conclusion: PET/CT scans in combination with brain MRIs have no additional benefit for the staging of patients with GGN lung adenocarcinoma before surgery.

Availability of Positron Emission Tomography-Computed Tomography for the Diagnosis of the Soft Tissue Tumor through Ultrasound-Guided Biopsy (초음파 유도하 침 생검을 이용한 연부조직 종양의 진단에 있어 양전자방출 컴퓨터 단층촬영술의 유용성)

  • Jun, Se Bin;Kim, Jeung Il;Lee, In Sook;Song, You Seon;Choi, Kyung Un
    • Journal of the Korean Orthopaedic Association
    • /
    • v.56 no.5
    • /
    • pp.398-403
    • /
    • 2021
  • Purpose: A biopsy is needed to diagnose soft tissue tumors. However, it is extremely difficult to pinpoint the site of a tumor due to the heterogeneity of sarcomas. Thus, even when an open biopsy is conducted, it is difficult to diagnose a soft tissue tumor. In such cases, an ultrasound (US)-guided biopsy is used to improve the diagnostic accuracy. This study evaluated the accuracy of US-guided biopsy for a diagnosis of soft tissue tumors found initially in a magnetic resonance (MR) perfusion and assessed the availability of positron emission tomography-computed tomography (PET-CT) for a diagnosis of soft tissue tumors. Materials and Methods: From January 2014 to December 2018, the US-guided biopsy was performed on 152 patients with a suspected soft tissue tumor found in an MR perfusion and 86 cases were definitively diagnosed with a soft tissue tumor. The accuracy of the US-guided biopsy was assessed retrospectively. Among the 86 cases, only MR perfusion was used before the biopsy in 50 cases, while both MR perfusion and PET-CT was conducted on 36 cases. The accuracy was analyzed to determine if the PET-CT could improve the precision of a biopsy. Results: From 86 cases, 34 out of 50 cases, in which only MR perfusion had been conducted, matched the result of the definitive diagnosis and the US-guided biopsy. 32 out of 36 cases, in which both PET-CT and MR perfusion were conducted, matched the definitive diagnosis and the US-guided biopsy. These results show significant differences in the accuracy of US-guided biopsy. In the case of soft tissue sarcomas, 6 out of 12 cases, in which only MR perfusion had been conducted, matched the result of the definitive diagnosis and the US-guided biopsy. 17 out of 18 cases, in which both PET-CT and MR perfusion were conducted, matched the definitive diagnosis. Moreover US-guided biopsy also showed significant differences in the accuracy of US-guided biopsy. Conclusion: In diagnosing soft tissue tumors, a US-guided biopsy is a well-known tool for its high accuracy. However, the heterogeneity of sarcoma makes it difficult to locate the exact site for a biopsy using only MR perfusion. Thus, the use of PET-CT will meaningfully improve the accuracy of a diagnosis by precisely targeting the site for the US-guided biopsy.

Preoperative Nodal 18F-FDG Avidity Rather than Primary Tumor Avidity Determines the Prognosis of Patients with Advanced Gastric Cancer

  • Kwon, Hyun Woo;An, Liang;Kwon, Hye Ryeong;Park, Sungsoo;Kim, Sungeun
    • Journal of Gastric Cancer
    • /
    • v.18 no.3
    • /
    • pp.218-229
    • /
    • 2018
  • Purpose: This study investigated whether the metabolic avidity of primary tumors and/or metastatic lymph nodes (LNs) measured by $^{18}F$-fluorodeoxyglucose ($^{18}F-FDG$) positron emission tomography/computed tomography (PET/CT) was related to survival after surgery in patients with advanced gastric cancer (AGC). Materials and Methods: One hundred sixty-eight patients with AGC who underwent preoperative $^{18}F-FDG$ PET/CT and curative resection were included. The $^{18}F-FDG$ avidity of the primary gastric tumor and LNs was determined quantitatively and qualitatively. The diagnostic performance of $^{18}F-FDG$ PET/CT was calculated, and the prognostic significance of $^{18}F-FDG$ avidity for recurrence-free survival (RFS) and overall survival (OS) was assessed. Results: In all, 51 (30.4%) patients experienced recurrence, and 32 (19.0%) died during follow-up (median follow-up duration, 35 months; range, 3-81 months); 119 (70.8%) and 33 (19.6%) patients showed $^{18}F-FDG$-avid primary tumors and LNs, respectively. $^{18}F-FDG$ PET/CT showed high sensitivity (73.8%) for the detection of advanced pathologic T ($pT{\geq}3$) stage and high specificity (92.2%) for the detection of advanced pN (${\geq}2$) stage. $^{18}F-FDG$ avidity of LNs was significantly associated with RFS (P=0.012), whereas that of primary tumors did not show significance (P=0.532). Univariate and multivariate analyses revealed that $^{18}F-FDG$ avidity of LNs was an independent prognostic factor for RFS (hazard ratio=2.068; P=0.029). Conclusions: $^{18}F-FDG$ avidity of LNs is an independent prognostic factor for predicting RFS. Preoperative $^{18}F-FDG$ PET/CT can be used to determine the risk and prognosis of patients with AGC after curative resection.

Performance of pre-treatment 18F-fluorodeoxyglucose positron emission tomography/computed tomography for detecting metastasis in ovarian cancer: a systematic review and meta-analysis

  • Han, Sangwon;Woo, Sungmin;Suh, Chong Hyun;Lee, Jong Jin
    • Journal of Gynecologic Oncology
    • /
    • v.29 no.6
    • /
    • pp.98.1-98.13
    • /
    • 2018
  • Objective: We describe a systematic review and meta-analysis of the performance of ${18}F$-fluorodeoxyglucose ($^{18}F-FDG$) positron emission tomography/computed tomography (PET/CT) for detecting metastasis in ovarian cancer. Methods: MEDLINE and Embase were searched for diagnostic accuracy studies that used $^{18}F-FDG$ PET or PET/CT for pre-treatment staging, using surgical findings as the reference standard. Sensitivities and specificities were pooled and plotted in a hierarchic summary receiver operating characteristic plot. Potential causes of heterogeneity were explored through sensitivity analyses. Results: Eight studies with 594 patients were included. The overall pooled sensitivity and specificity for metastasis were 0.72 (95% confidence interval [CI]=0.61-0.81) and 0.93 (95% CI=0.85-0.97), respectively. There was considerable heterogeneity in sensitivity ($I^2=97.57%$) and specificity ($I^2=96.74%$). In sensitivity analyses, studies that used laparotomy as the reference standard showed significantly higher sensitivity and specificity (0.77; 95% CI=0.67-0.87 and 0.96; 95% CI=0.92-0.99, respectively) than those including diagnostic laparoscopy (0.62; 95% CI=0.46-0.77 and 0.84; 95% CI=0.69-0.99, respectively). Higher specificity was shown in studies that confirmed surgical findings by pathologic evaluation (0.95; 95% CI=0.90-0.99) than in a study without pathologic confirmation (0.69; 95% CI=0.24-1.00). Studies with a lower prevalence of the FDG-avid subtype showed higher specificity (0.97; 95% CI=0.94-1.00) than those with a greater prevalence (0.89; 95% CI=0.80-0.97). Conclusion: Pre-treatment $^{18}F-FDG$ PET/CT shows moderate sensitivity and high specificity for detecting metastasis in ovarian cancer. With its low false-positive rate, it can help select surgical approaches or alternative treatment options.

Prognostic Value of Restaging F-18 Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography to Predict 3-Year Post-Recurrence Survival in Patients with Recurrent Gastric Cancer after Curative Resection

  • Sung Hoon Kim;Bong-Il Song;Hae Won Kim;Kyoung Sook Won;Young-Gil Son;Seung Wan Ryu
    • Korean Journal of Radiology
    • /
    • v.21 no.7
    • /
    • pp.829-837
    • /
    • 2020
  • Objective: The aim of this study was to investigate the prognostic value of the maximum standardized uptake value (SUVmax) measured while restaging with F-18 fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) to predict the 3-year post-recurrence survival (PRS) in patients with recurrent gastric cancer after curative surgical resection. Materials and Methods: In total, 47 patients with recurrent gastric cancer after curative resection who underwent restaging with 18F-FDG PET/CT were included. For the semiquantitative analysis, SUVmax was measured over the visually discernable 18F-FDG-avid recurrent lesions. Cox proportional-hazards regression models were used to predict the 3-year PRS. Differences in 3-year PRS were assessed with the Kaplan-Meier analysis. Results: Thirty-nine of the 47 patients (83%) expired within 3 years after recurrence in the median follow-up period of 30.3 months. In the multivariate analysis, SUVmax (p = 0.012), weight loss (p = 0.025), and neutrophil count (p = 0.006) were significant prognostic factors for 3-year PRS. The Kaplan-Meier curves demonstrated significantly poor 3-year PRS in patients with SUVmax > 5.1 than in those with SUVmax ≤ 5.1 (3-year PRS rate, 3.5% vs. 38.9%, p < 0.001). Conclusion: High SUVmax on restaging with 18F-FDG PET/CT is a poor prognostic factor for 3-year PRS. It may strengthen the role of 18F-FDG PET/CT in further stratifying the prognosis of recurrent gastric cancer.

Comparison of Positron Emission Tomography(PET) imaging-based initial in vivo pharmacokinetics by administration routes of [18F]FDG

  • Yiseul Choi;Jang Woo Park;Eun Sang Lee;Ok-Sun Kim;Hye Kyung Chung
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.7 no.2
    • /
    • pp.99-103
    • /
    • 2021
  • In this study, the initial in vivo pharmacokinetic changes according to the routes of drug administration were investigated using bioimaging techniques. The purpose of this study was to quantify the degree of distribution of each major organ in normal mice over time by acquiring Positron Emission Tomography/Computed Tomography images while administering routes F-18 fluorodeoxyglucose such as intravenous, intraperitoneal and per oral, a representative diagnostic radiopharmaceutical. Dynamic Positron Emission Tomography images were acquired for 90 minutes after drug administration. Radioactivity uptake was calculated for major organs using the PMOD program. In the case of intravenous administration, it was confirmed that it spread quickly and evenly to major organs. Compared to intravenous administration, intraperitoneal administration was about three times more absorbed and distributed in the liver and intestine, and it was showed that the amount excreted through the bladder was more than twice. In the case of oral administration, most stayed in the stomach, and it was showed that it spread slowly throughout the body. In comparison with intravenous administration, it was presented that the distribution of kidneys was more than 9 times and the distribution of bladder was 66% lower. Since there is a difference in the initial in vivo distribution and excretion of each administration method, we confirmed that the determination of the administration route is important for in vivo imaging evaluation of new drug candidates.

PET System Design using a Scintillator with a Size of 0.8 mm to Improve Spatial Resolution (공간분해능 향상을 위한 0.8 mm 크기의 섬광체를 사용한 PET 시스템 설계)

  • Lee, Seung-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.5
    • /
    • pp.499-504
    • /
    • 2022
  • Positron emission tomography (PET) uses a very small scintillator to achieve exellent spatial resolution. Therefore, in this study, a PET system using a scintillator to 0.8 mm size was designed and the performance was evaluated. Anihilation radiation was generated from the center of the field of view (FOV) to the outskirts at intervals of 10 mm, and counted simultaneously. The image was reconstructed using the coincidence data, and the spatial resolution was calculated by acquiring the full width at half maximum through the profile. The spatial resolution at the center of the FOV was 1.02 mm, showing a very good result, and the spatial resolution decreased as it was located at the outer edge. To evaluate the phantom image, the Derenzo phantom was constructed to acquire the image, and the degree of classification between radiation sources was evaluated through profile analysis. The result showed that the distance between the radiation sources was larger than the spatial resolution of the radiation sources at each location, and it was confirmed that the radiation sources were distinguished through this. When the PET system designed in this study is applied to PET for small animals, it is considered that excellent performance can be secured through the characteristic of very good spatial resolution.

Diagnosis of Graft Infection Using FDG PET-CT

  • Shim, Hun-Bo;Sung, Ki-Ick;Kim, Wook-Sung;Lee, Young-Tak;Park, Pyo-Won;Jeong, Dong-Seop
    • Journal of Chest Surgery
    • /
    • v.45 no.3
    • /
    • pp.189-191
    • /
    • 2012
  • Graft infections after aortic replacement are a rare, but severe complication. Because surgical removal of the infection source is essential, an accurate diagnosis is required to prevent unnecessary treatment. Both of the patients described herein were diagnosed with graft infections using dual-modality positron emission tomography-computed tomography; one patient was a false-positive, and the other was confirmed with an infection.

1-Benzyl indazole derivative-based 18F-labeled PET radiotracer: Radiosynthesis and cell uptake study in cancer cells

  • More, Kunal N.;Lee, Jun Young;Park, Jeong-Hoon;Chang, Dong-Jo
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.5 no.1
    • /
    • pp.36-47
    • /
    • 2019
  • Hypoxia-inducible factor-1 ($HIF-1{\alpha}$) is a transcription factor activated in response to low oxygen level, and is highly expressed in many solid tumors. Moreover, $HIF-1{\alpha}$ is a representative biomarker of hypoxia and also helps to maintain cell homeostasis under hypoxic condition. Most solid tumors show hypoxia, which induces poor prognosis and resistance to conventional cancer therapies. Thus, early diagnosis of hypoxia with positron emission tomography (PET) radiotracer would be highly beneficial for management of malignant solid tumors with effective cancer therapy. YC-1 is a most promising candidate among several $HIF-1{\alpha}$ inhibitors. As an effort to develop a hypoxia imaging tool as a PET radiotracer, we designed and synthesized [$^{18}F$]DFYC based on potent derivative of YC-1 and performed preliminary in vitro cell uptake study. [$^{18}F$]DFYC showed a significant accumulation in SKBR-3 cells among other cancer cells, proving as a good lead to develop a hypoxic solid tumor such as breast cancer.