• Title/Summary/Keyword: PET/EVOH film

Search Result 5, Processing Time 0.017 seconds

Shelf Life Prediction of Seasoned Anchovies packaged with PET/EVOH Film (포장(PET/EVOH Film) 멸치조미가공품의 유통기한 예측)

  • Lee, Eui-Seok;Lee, Hyong-Ju;Bae, Jae-Seok;Kim, Yong-Kuk;Lee, Jong-Hyeouk;Hong, Soon-Taek
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.23 no.6
    • /
    • pp.827-832
    • /
    • 2013
  • An attempt is made to predict the shelf life of seasoned anchovies packaged with laminated film, composed of polyethylene terephthalate (PET) and ethylene vinyl alcohol (EVOH). First, a descriptive sensory analysis is carried out to determine the principal sensory quality index in seasoned anchovies. Then, the physicochemical quality index with high correlation to the principal sensory quality index is determined accordingly. Subsequently, with the physicochemical quality index, the shelf-life is estimated by using the Arrhenius equation. As for the sensory quality index, 'color' is determined as a principal sensory quality index. For all samples stored at 3 different temperatures (25, 35, $45^{\circ}C$), it is observed that the sensory score is shown to be over 2.5 until 60 days of storage period, which is the lowest acceptable level. In addition, the b-value, as a physicochemical quality index, is determined to have a high correlation to the sensory quality index. Further, the activation energy and the Q10 value for the b-value by the Arrhenius equation is found to be 11.24 kcal/mol, 1.385~2.011, respectively. Thus, it can be concluded that the shelf life of seasoned anchovies packaged with PET/EVOH film is estimated to be 279.44 days when stored at $20^{\circ}C$.

Migration Behavior of Fatty Materials into the Selected Plastic Film During Storage (저장 조건에서의 플라스틱 포장재와 지방산의 전이도 측정)

  • An, Duek-Jun
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.8 no.2
    • /
    • pp.39-43
    • /
    • 2002
  • Increasing use of plastics in food packaging materials has led to the issue of food-plastic packaging materials's mutual interactions. Although the plastic packaging materials are generally considered as inert, migration and sorption of fatty materials are some of the problems associated with their use. So, this work investigated the compatibility of three structurally different polymers, polypropylene (PP), polyethyleneterephthalate (PET) and ethylene vinyl alcohol copolymer (EVOH) with some structurally different food fats. The main goal was to study the sorption of food fats by the plastic films and to see what extent mechanical properties of the plastic films was affected by plasticization effect due to sorption of fatty materials. PP, PET, and EVOH films was immersed in pure triglycerides, and then extracted with hexane and analyzed for the amounts of fat migrated. The sorbed films were also investigated for change in mechanical properties. Result showed that structural factor of the films and fatty materials plays important role in th migration process. The fat with the simplest structure are migrated more easily that the fat with more complex structure. However, structural effect of migration was varied according to degree of crystallinity and density of plastic films. In addition to that, polarity of plastic film was affected migration of fatty materials significantly. Additional research is needed to justify the reason why migration of fatty materials into the films was affected by polarity and structural integrity.

  • PDF

Effects of Packaging Materials on the Physicochemical Characteristics of Seasoned Anchovies During Storage (포장재가 멸치조미가공품의 저장 중 이화학적 품질 특성에 미치는 영향)

  • Lee, Eui-Seok;Lee, Hyong-Ju;Bae, Jae-Seok;Kim, Yong-Kuk;Lee, Jong-Hyeouk;Hong, Soon-Taek
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.23 no.4
    • /
    • pp.461-469
    • /
    • 2013
  • This research is performed to investigate the changes in the physicochemical properties and microbial growths of seasoned anchovies with various packaging materials (PET/CPP : polyethylene terephthalate/cast polypropylene, PET/EVOH : polyethylene terephthalate/ethylene-vinyl alcohol, PET/AL/LDPE: polyethylene terephthalate/aluminum/low density polyethylene), which are stored at various temperatures (25, 35, $45^{\circ}C$) for 60 days. Generally, it is being observed that changes in physicochemical properties (i.e., moisture content, color, brown intensity, TBA value, TMA, VBN etc) of seasoned anchovies are significant when stored at higher temperatures. Particularly, the packaging materials are found to influence substantially on the physicochemical properties of seasoned anchovies. With packaging materials of high oxygen transmission rates and moisture vapor transmission rates (i.e., PET/CPP), the changes in physicochemical properties of seasoned anchovies are significant, while being low with low oxygen transmission rates and low moisture vapor transmission rates (i.e., PET/EVOH). In addition, results of microbial growths in seasoned anchovies show that significant increases in total aerobic bacteria counts (about 100-fold after 60 day of storage) are observed in samples with packaging materials of high oxygen transmission rates and moisture vapor transmission rates (i.e, PET/CPP), while with only small increases for samples of low oxygen transmission rates and low moisture vapor transmission rates (i.e., PET/EVOH). Based on the changes in the physicochemical properties and results of microbial growths, it is being concluded that PET/EVOH film is suitable for the packaging of seasoned anchovies.

Study about decreasing methods of printing ink solvents residue amounts on plastic food package materials (플라스틱 포장재의 잔존 인쇄 용제 감소 방안)

  • An, Duek-Jun;Cho, Hoon-Il
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 2004
  • Amount of residual ink solvent on the packaging materials from Korea, Japan and Europe was measured and compared. The amount of packaging materials from Korea was much higher than that of Japan and Europe. To reduce the residual amounts of ink solvent, aging condition of printed packaging materials including aging time and temperature was modified and evaluated. Aging with high temperature and short time ($60^{\circ}C$ and 24 hours) was more effective for reduction of residual amount of ink solvent than that with low temperature and long time. To find out change of reduction pattern of residual amount of solvent according to plastic packaging material, several monolayer and multilayer packaging materials were selected. Among the monolayer packaging materials, the amount of EVOH and PET was lower than that of polyolefin plastic film including PE and PP. PP/EVOH/PET among the selected multilayer film showed the lowest amount of residual ink solvent on food packaging materials. Result of this research revealed that the residual amount of ink solvent can be reduced by proper selection of aging condition with and by appropriate application of mutilayer plastic film.

  • PDF

Preparation and Characterization of PET/PVA-BA/OPP Multi-layer Films for Seasoned-laver Packaging (조미김 포장을 위한 PET/PVA-BA/OPP 다층필름 제조 및 특성분석)

  • Lim, Mijin;Kim, Dowan;Seo, Jongchul
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.23 no.1
    • /
    • pp.9-15
    • /
    • 2017
  • To identify applicability for packaging material of polyvinyl alcohol (PVA)/boric acid (BA) coating solution with highly-enhanced water vapor and oxygen barrier properties, the PET/PVA-BA/OPP multi-layer films were prepared through comma coating and lamination process. The oxygen and water vapor permeabilities, and tensile strength of as-prepared multi-layer films were investigated before and after pressure cooker test (PCT). Although oxygen and water vapor permeabilites, and mechanical properties of PET/PVA-BA/OPP multi-layer films was decreased after PCT, their properties were highly enhanced as increase of BA contents in PVA matrix. This is strongly related with enhanced cross-linking density in PVA-BA layer. In storage test of seasoned-laver, the PET/PVA-BA/OPP multi-layer films were comparatively effective to suppress the increase in peroxide value originating from oxidation of seasoned-laver. Comparing the commercially available PP/Al-metallized PP for seasoned-laver packaging, however, PET/PVA-BA/OPP multi-layer films did not show any advantage in water activity. This is due to higher water vapor permeation properties of as-prepared multi-layer films. Therefore, further studies are required to enhance the water vapor permeation in PET/PVA-BA/OPP multi-layer films.