• Title/Summary/Keyword: PERCIST

Search Result 2, Processing Time 0.015 seconds

Comparison of Metabolic and Anatomic Response to Chemotherapy Based on PERCIST and RECIST in Patients with Advanced Stage Non-small Cell Lung Cancer

  • Ordu, Cetin;Selcuk, Nalan A.;Akosman, Cengiz;Eren, Orhan Onder;Altunok, Elif C.;Toklu, Turkay;Oyan, Basak
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.1
    • /
    • pp.321-326
    • /
    • 2015
  • Background: The aim of this study was to explore the prognostic role of metabolic response to chemotherapy, determined by FDG-PET, in patients with metastatic non-small-cell lung cancer (NSCLC). Materials and Methods: Thirty patients with metastatic NSCLC were analyzed for prognostic factors related to overall survival (OS) and progression free survival (PFS). Disease evaluation was conducted with FDG-PET/CT and contrast-enhanced CT prior to and at the end of first-line chemotherapy. Response evaluation of 19 of 30 patients was also performed after 2-3 cycles of chemotherapy. Morphological and metabolic responses were assessed according to RECIST and PERCIST, respectively. Results: The median OS and PFS were 11 months and 6.2 months, respectively. At the end of first-line chemotherapy, 10 patients achieved metabolic and anatomic responses. Of the 19 patients who had an interim response analysis after 2-3 cycles of chemotherapy, 3 achieved an anatomic response, while 9 achieved a metabolic response. In univariate analyses, favorable prognostic factors for OS were number of cycles of first-line chemotherapy, and achieving a response to chemotherapy at completion of therapy according to the PERCIST and RECIST. The OS of patients with a metabolic response after 2-3 cycles of chemotherapy was also significantly extended. Anatomic response at interim analysis did not predict OS, probably due to few patients with anatomic response. In multivariate analyses, metabolic response after completion of therapy was an independent prognostic factor for OS. Conclusions: Metabolic response is at least as effective as anatomic response in predicting survival. Metabolic response may be an earlier predictive factor for treatment response and OS in NSCLC patients.

Interobserver and Intraobserver Reproducibility of SUL Measurements in Reference Organs on FDG PET/CT (FDG PET/CT 검사 시 참고장기에서 측정한, 제지방체중으로 표준화한 표준화 섭취계수의 관찰자 사이 및 관찰자 내 재현성에 대한 연구)

  • Kim, Seong Su;Shin, Yong Cheol;Lee, Sun Do;Lee, Nam Ju;Kim, Jong Cheol;Lee, Chun Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.17 no.1
    • /
    • pp.11-17
    • /
    • 2013
  • Purpose: The use of SUV which should be normalized by lean body mass (LBM) is recommended for PET response criteria in solid tumors. LBM which was determined by whole body CT was used for SUV normalization (SUL) in this study. The purpose of the present study was to assess interobserver and intraobserver reproducibility of SUL measurements in reference organs. Materials and Methods: F-18 FDG PET/CT was conducted on 52 subjects and LBMs were directly determine by whole body CT for normalization of SUV. The 3 cm diameter spherical VOI, $1\times2$ cm cylindrical VOI, 2 cm diameter spherical VOI were placed in the liver, descending aorta and spleen, respectively. Experienced two observers measured SULmax and SULmean in each organ. Repeated measurements were conducted two weeks apart by observer 1 blind to previous results. Similarly, measurements were conducted on the same patients by observer 2. For assessing reproducibility(or repeatability), the paired t-test, Pearson's correlation coefficients (CC), and technical error of measurement (TEM) were calculated. Results: For interobserver reproducibility in liver SULmax and SULmean, no significant differences were found between observers(paired t-test, P=0.536, 0.293, respectively). CC and TEM for liver SULmean were 0.909 (P=0.000) and 0.067 SUL unit, respectively. Corresponding figures for liver SULmax were 0.882 (P=0.000) and 0.117 SUL unit, respectively. For intraobserver reproducibility in liver SULmax and SULmean, no significant differences were observed within observer1 (paired t-test, P=0.374, 0.268, respectively). CC and TEM for liver SULmean were 0.924 (P=0.000) and 0.061 SUL, respectively. Corresponding figures for liver SULmax were 0.908 (P=0.000) and 0.104 SUL, respectively. Similarly, no significant differences were found in SULmax and SULmean of the spleen and aorta between observers. Conclusion: The current study demonstrated that both SULmean and SULmax measurements in normal reference organs are highly reproducible. Reproducibility of SULmean in reference organs were slightly better than SULmax. Interobsever technical error of measurement was less than 0.10 SUL unit for liver SULmean, and 0.12 SUL unit for liver SULmax. Intraobsever technical error of measurement was less than 0.07 SUL unit for liver SULmean, and 0.11 SUL unit for liver SULmax.

  • PDF