• 제목/요약/키워드: PEM fuel cells

검색결과 110건 처리시간 0.029초

Comparison of Electrode Backing Materials for Polymer Electrolyte Membrane Fuel Cells

  • Sasikumar, G.;Ryu, H.
    • 전기화학회지
    • /
    • 제6권3호
    • /
    • pp.183-186
    • /
    • 2003
  • In a PEM fuel cell electrode, backing layer has tremendous impact on electrode performance. The backing layer provides structural support for the porous electrode, distributes the reactants to the other layers and acts as a current collector. It has major influence on the water management in a PEM fuel cell. Selection of suitable backing layer material for the fabrication of electrode is thus very important to achieve high performance. In this paper we have compared the performance of PEM fuel cell electrodes fabricated using carbon paper EC-TPI-060T, carbon cloth EC-CCI-060T, (ElectroChem Inc.USA) and Carbon cloth from Textron, USA (CPW 003 grade). Mass transport problem was observed under non-pressurized condition, at high current densities, in the caie of EC-CC1-060T carbon cloth electrode (at $50^{\circ}C$), due to its higher thickness. The performance of carbon paper electrode was higher than EC-CCI-060T carbon cloth electrode. The performance of Textron carbon cloth was comparable to EC-TPI -060T carbon paper.

연료전지 전원을 갖는 Z-소스 능동전력필터에 의한 장거리 배전선로의 전압 THD 저감 (Voltage THD Mitigation of Power Distribution System using Z-Source Active Power Filter with a Fuel Cells Source)

  • 정영국
    • 전기학회논문지
    • /
    • 제57권12호
    • /
    • pp.2161-2166
    • /
    • 2008
  • This paper deals with a Z-source active power filter(Z-AFU) for mitigation voltage THD(total harmonic distortion) due to voltage harmonic propagation(amplification) in 6.6kv power distribution system. Bus voltage harmonic signal is detected by 60Hz butterworth BPF(band pass filter). As an ESS(energy storage system) of the proposed system, PEM fuel cells(Ballard NEXA, 1.2kw) is employed. Test results based on PSIM(power electronics simulation tool) validate the proposed approach.

고체고분자형 연료전지 내의 이동현상에 대한 수치해석 (NUMERICAL ANALYSIS OF TRANSPORT PHENOMENA IN POLYMER ELECTROLYTE FUEL CELLS)

  • 박찬국
    • 한국전산유체공학회지
    • /
    • 제12권1호
    • /
    • pp.9-15
    • /
    • 2007
  • A three dimensional numerical model to predict the flow and transport of mixtures and also the electrochemical reactions in polymer electrolyte membrane (PEM) fuel cells is developed. The numerical computation is base on vorticity- velocity method. Governing equations for the flow and transport of mixtures are coupled with the equations for electrochemical reactions and are solved simultaneously including production and condensation of vapor. Fuel cell performance predicted by this calculation is compared with the experimental results and resonable agreements are achieved.

CFD를 이용한 모바일기기용 고분자전해질 연료전지 성능해석 (The Performance Analysis of Polymer Electrolyte Membrane Fuel Cells for Mobile Devices using CFD)

  • 김병희;최종필;강대철;전병희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.553-554
    • /
    • 2006
  • This paper presents the effects of different operating parameters on the performance of a proton exchange membrane (PEM) fuel cell by a three-dimensional computational fluid dynamics (CFD) model. The effects of different operating parameters on the performance of PEM fuel cell studied using pure hydrogen on the anode side and air on the cathode side. The various parameters are temperatures, pressures, humidification of the gas steams and various combinations of these parameters. In addition, geometrical and material parameters such as the gas diffusion layer (GDL) thickness and porosity as well as the ratio between the channel width and the land area were investigated.

  • PDF

섬유강화 복합재를 사용한 PEM 연료전지 분리판의 전기적.기계적 특성 평가 (Evaluation of Mechanical and Electrical Properties of Bipolar Plate Made of Fiber-reinforced Composites for PEM Fuel Cell)

  • 이희섭;안성훈;전의식;안상열;안병기
    • 한국자동차공학회논문집
    • /
    • 제14권5호
    • /
    • pp.39-46
    • /
    • 2006
  • The fuel cell is one of promising environment-friendly energy sources for the next generation. The bipolar plate is a major component of the PEM fuel cell stack, which takes a large portion of stack cost. In this study, as alternative materials for bipolar plate of PEM fuel cells, graphite composites were fabricated by compression molding. Graphite particles mixed with epoxy resin were used as the main substance to provide electric conductivity To achieve desired electrical properties, specimens made with different mixing ratio, processing pressure and temperature were tested. To increase mechanical strength, one or two layers of woven carbon fabric were added to the graphite and resin composite. Thus, the composite material was consisted of three phases: graphite particles, carbon fabric, and epoxy resin. By increasing mixing ratio of graphite, fabricated pressure and process temperature, the electric conductivity of the composite was improved. The results of tensile test showed that the tensile strength of the two-phase graphite composite was about 4MPa, and that of three-phase composite was increased to 57MPa. As surface properties, contact an91e and surface roughness were tested. Graphite composites showed contact angles higher than $90^{\circ}$, which mean low surface energy. The average surface roughness of the composite specimens was $0.96{\mu}m$.

FUEL CELL ELECTRIC VEHICLES: RECENT ADVANCES AND CHALLENGES - REVIEW

  • Yang, W.C.
    • International Journal of Automotive Technology
    • /
    • 제1권1호
    • /
    • pp.9-16
    • /
    • 2000
  • The growing concerns on environmental protection have been constantly demanding cleaner and more energy efficient vehicles without compromising any conveniences provided by the conventional vehicles. The recent significant advances in proton-exchange-membrane (PEM) fuel cell technology have shown the possibility of developing such vehicles powered by fuel cells. Several prototype fuel cell electric vehicles (FCEV) have been already developed by several major automotive manufactures, and all of the favorable features have been demonstrated in the public roads. FCEV is essentially a zero emission vehicle and allows to overcome the range limitation of the current battery electric vehicles. Being motivated by the laboratory and field demonstrations of the fuel cell technologies, variety of fuel cell alliances between fuel cell developers, automotive manufactures, petroleum companies and government agencies have been formed to expedite the realization of commercially viable FCEV. However, there still remain major issues that need to be overcome before it can be fully accepted by consumers. This paper describes the current fuel cell vehicle development status and the staggering challenges for the successful introduction of consumer acceptable FCEVS.

  • PDF

공급유량 및 스택온도의 변이에 따른 200W급 PEM형 연료전지의 전기적 성능특성 (Electrical Performance Characteristics of 200W PEM-Type Fuel Cells with Variations on Mass Flow Rate and Stack Temperature)

  • 홍경진;박세준;최용성;이경섭
    • 전기학회논문지P
    • /
    • 제58권4호
    • /
    • pp.563-567
    • /
    • 2009
  • The polymer electrolyte membrane fuel cell(PEMFC) with the advantages of low-operating temperature, high current density, low cost and volume, fast start-up ability, and suitability for discontinuous operation becomes the most reasonable and attractive power system for transportation vehicle and micro-grid power plant in a household. 200W PEM-type FCs system was integrated by this study, then the electrical characteristics and diagnosis of the fuel cell were analyzed with variations on mass flow rate and stack temperature. The ranges of the variations are 1~8L/min on $H_2$ volume and $20{\sim}70^{\circ}C$ on stack temperature.

Experimental performance characteristics of 1 kW commercial PEM fuel cell

  • Shubhaditya Kumar;Pranshu Shrivastava;Anil Kumar
    • Advances in Energy Research
    • /
    • 제8권4호
    • /
    • pp.203-211
    • /
    • 2022
  • The aim of this paper is to analyze the performance of commercial fuel cell (rated capacity 1000W) with the help of resistive load and output power variation with change in H2 flow rate and calculate the maximum power point (MPP) of the proton exchange membrane (PEM) while changing AC and DC load respectively. The factors influencing the output power of a fuel cell are hydrogen flow rate, cell temperature, and membrane water content. The results show that when the H2 flow rate is changed from 11, 13, and 15 Lpm, MPP is increased from lower to higher flow rate. The power of the fuel cell is increased at the rate of 29% by increasing the flow rate from 11 to 15 lpm. This study will allow small-scale industries and residential buildings (in remote or inaccessible areas) to characterize the performance of PEMFC. Furthermore, fuel cell helps in reducing emission in the environment compared to fossil fuels. Also, fuel cells are ecofriendly as well as cost effective and can be the best alternative way to convert energy.

직접 메탄올 연료전지용 탄화수소계 고분자 전해질 막 연구개발 동향 (Research Trends on Hydrocarbon-Based Polymer Electrolyte Membranes for Direct Methanol Fuel Cell Applications)

  • 정유경;이다정;김기현
    • 멤브레인
    • /
    • 제33권6호
    • /
    • pp.325-343
    • /
    • 2023
  • 직접 메탄올 연료전지(direct methanol fuel cell, DMFC)는 연료의 개질 없이 메탄올 연료를 공급하여 수소이온과 전자 생성을 통해 전류를 생산하는 에너지 변환 장치이다. 현재 DMFC에 적용되고 있는 고분자 전해질 막(polymer electrolyte membrane, PEM)은 높은 수소이온 전도도와 물리화학적 안정성을 갖는 과불소화계 이오노머를 활용한 PEM이지만, 높은 메탄올 투과율과 분해 시 발생되는 환경 오염 물질 등의 문제로 인해 신규 소재 개발이 요구되고 있다. 최근 들어, 과불소화계 이오노머에 비해 낮은 연료 투과율 및 우수한 물리화학적 안정성을 갖는 탄화수소계 고분자 기반 PEM을 DMFC에 적용하는 연구들이 보고되고 있다. 본 총설에서는 탄화수소계 고분자 기반 PEM 중 1) 친수성/소수성 영역의 뚜렷한 나노 상분리 구조를 나타내는 가지형 공중합체를 합성하여 수소이온 전도성과 메탄올의 선택도를 향상시킨 연구, 2) 제막 단계에서 가교 구조를 도입하여 메탄올 투과율을 감소시키고 치수 안정성을 향상시킨 연구, 3) 유/무기계 첨가제 및 다공성 지지체를 도입하여 성능을 개선한 복합 막 개발 연구에 대해 소개하고자 한다.

Effect of FTO coated on stainless steel bipolar plate for PEM fuel cells

  • 박지훈;장원영;변동진;이중기
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 춘계학술발표대회
    • /
    • pp.55.2-55.2
    • /
    • 2009
  • A polymer electrolyte membrane (PEM) fuel cell has been getting large interest as a typical issue in useful applications. The PEMFC is composed of a membrane, catalyst and the bipolar plate. SnOx:F films on SUS316 stainless steel were prepared as a function of substrate with using electron cyclotron resonance-metal organic chemical vapor deposition (ECR-MOCVD) in order to achieve the corrosion-resistant and low contact resistance bipolar plates for PEM fuel cells. The SnOx:F films coated on SUS316 substrate at surface plasma treatment for excellent stability, before/after heat treatment for good crystalline structure and microwave power for were characterized by X-ray diffraction (XRD), auger electron microscopy (AES) and field emission-scanning electron microscopy (FE-SEM). The SnOx:F film coated on SUS316 substrate with various process parameters were able to observe optimum interfacial contact resistance (ICR) and corrosion resistance. It can be concluded that fluorine-doping content plays an important function in electrical property and characteristic of corrosion-protective film.

  • PDF