• Title/Summary/Keyword: PEM fuel cells

Search Result 110, Processing Time 0.026 seconds

Energy Management and Performance Evaluation of Fuel Cell Battery Based Electric Vehicle

  • Khadhraoui, Ahmed;SELMI, Tarek;Cherif, Adnene
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.37-44
    • /
    • 2022
  • Plug-in Hybrid electric vehicles (PHEV) show great potential to reduce gas emission, improve fuel efficiency and offer more driving range flexibility. Moreover, PHEV help to preserve the eco-system, climate changes and reduce the high demand for fossil fuels. To address this; some basic components and energy resources have been used, such as batteries and proton exchange membrane (PEM) fuel cells (FCs). However, the FC remains unsatisfactory in terms of power density and response. In light of the above, an electric storage system (ESS) seems to be a promising solution to resolve this issue, especially when it comes to the transient phase. In addition to the FC, a storage system made-up of an ultra-battery UB is proposed within this paper. The association of the FC and the UB lead to the so-called Fuel Cell Battery Electric Vehicle (FCBEV). The energy consumption model of a FCBEV has been built considering the power losses of the fuel cell, electric motor, the state of charge (SOC) of the battery, and brakes. To do so, the implementing a reinforcement-learning energy management strategy (EMS) has been carried out and the fuel cell efficiency has been optimized while minimizing the hydrogen fuel consummation per 100km. Within this paper the adopted approach over numerous driving cycles of the FCBEV has shown promising results.

Research Trend of Organic/Inorganic Composite Membrane for Polymer Electrolyte Membrane Fuel Cell (고분자 전해질 연료전지용 유.무기 복합막의 연구개발동향)

  • Kim, Deuk Ju;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.22 no.3
    • /
    • pp.155-170
    • /
    • 2012
  • Fuel cells have been considered as alternative power generation system in the twenty-first century because of eco-friendly system, high power density and efficiency compare with petroleum engine system. Proton exchange membranes (PEMs) are the key components in fuel cell system. Currently, Nafion has been used in fuel cell system. However, Nafion has disadvantages such as low conductivity at high temperature and high cost. The researchers have focused to reach the high properties such as high proton conductivity, low permeability to fuel, good chemical/thermal stability, good mechanical properties and low manufacturing cost. Various methods have been developed for preparation of proton exchange membrane with high performance and commercialization of fuel cell system. The hybrid organic/inorganic membrane has the potentials to provide a unique combination of organic and inorganic properties with improved proton conductivity and mechanical property at high temperatures. So, this paper presents an overview of research trend for the composite membranes prepared by organic/inorganic system using various inorganic materials.

The Study on In-situ Measurement of Hydrogen Permeability through Polymer Electrolyte Membranes for Fuel Cells (연료전지용 고분자전해질막의 실시간 수소 투과도 측정법 연구)

  • Lim, Yoon Jae;Lee, Chang Hyun
    • Membrane Journal
    • /
    • v.26 no.2
    • /
    • pp.141-145
    • /
    • 2016
  • Polymer electrolyte membranes (PEMs) are key components to determine electrochemical fuel cell performances, in addition to electrode materials. The PEMs need to satisfy selective transport behaviors to small molecules including gases and protons; the PEMs have to transport protons as fast as possible, while they should act as hydrogen barriers, since the permeated gas induces the thermal degradation of cathode catalyst, resulting in rapid electrochemical reduction. To date, limited tools have been used to measure how fast hydrogen gas permeates through PEMs (e.g., Constant volume/variable Pressure (time-lag) method). However, most of the measurements are conducted under vacuum where PEMs are fully dried. Otherwise, the obtained hydrogen permeance is easily changeable, which causes the measurement errors to be large. In this study, hydrogen permeation properties through Nafion212 used as a standard PEM are evaluated using an in-situ measurement system in which both temperature and humidity are controlled at the same time.

Design of Inlet Manifold for PEM Fuel Cells and Numerical Analysis (고분자 전해질 연료전지를 위한 연료주입구 설계 및 수치해석)

  • Uhm, Seung-Bae;Na, Tae-Kyung;Kim, Hong-Suk;Baek, Jung-Sik;Sung, Dong-Mug;Kim, Tae-Min
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.172-175
    • /
    • 2007
  • The Performance of a PEMFC stack is strongly dependent on the uniform reactants distribution on MEA. The uniform distribution can be achieved by flow-field pattern and manifold design optimized to satisfy operating conditions. This paper investigates uniform reactants distribution in channels by changing manifold shape and inlet mass flow rate. Typical U and Z shape and modified U and Z shape manifolds with buffer zone were designed. To check the uniform reactants distribution, standard deviation of mass flow rate was compared. The numerical results show that the inlet mass flow rate, inlet shape, and manifolds shape are critical factor for uniform distribution.

  • PDF

A Numerical Study on the Effectiveness Factor of Ni Catalyst Pellets for Steam-Methane Reforming (수증기-메탄개질용 Ni 촉매의 유용도에 관한 수치적 연구)

  • Choi, Chong-Gun;Nam, Jin-Hyun;Shin, Dong-Hoon;Jung, Tae-Yong;Kim, Young-Gyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.63-66
    • /
    • 2007
  • Reformers which produce hydrogen from natural gas are essential for the operation of residential PEM fuel cells. For this purpose, steam-methane reforming reactions with Ni catalysts is primarily utilized. Commercial Ni catalysts are generally made to have porous pellet shapes in which Ni catalyst particles are uniformly dispersed over Alumina support structures. This study numerically investigates the reduction of catalyst effectiveness due to the mass transport resistances posed by porous structures of spherical catalyst pellets. The multi-component diffusion through porous media and the accurate kinetics of reforming reaction is fully considered in the numerical model. The preliminary results on the variation of the effectiveness factor according to different operation conditions are presented, which is planned to be used to develop correlations in future studies.

  • PDF

Hot-Pressing Effects on Polymer Electrolyte Membrane Investigated by 2H NMR Spectroscopy

  • Lee, Sang Man;Han, Oc Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.510-514
    • /
    • 2013
  • The structural change of Nafion polymer electrolyte membrane (PEM) induced by hot-pressing, which is one of the representative procedures for preparing membrane-electrode-assembly for low temperature fuel cells, was investigated by $^2H$ nuclear magnetic resonance (NMR) spectroscopy. The hydrophilic channels were asymmetrically flattened and more aligned in the membrane plane than along the hot-pressing direction. The average O-$^2H$ director of $^2H_2O$ in polymer electrolyte membrane was employed to extract the structural information from the $^2H$ NMR peak splitting data. The dependence of $^2H$ NMR data on water contents was systematically analyzed for the first time. The approach presented here can be used to understand the chemicals' behavior in nano-spaces, especially those reshaping and functioning interactively with the chemicals in the wet and/or mixed state.

Proton Exchange Membranes using Polymer Blends of PVA(Polyvinyl alcohol)/PSSA-MA(Polystyrene sulfonic acid-co-maleic acid)

  • Knag, Moon-Sung;Kim, Jong-Hak;Kim, Hyunyoo;Jongok Won;Moon, Seung-Hyeon;Kang, Yong-Soo
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.29-32
    • /
    • 2004
  • Reduction of methanol crossover in proton exchange membranes (PEMs) can be achieved by 1) the selection of materials, 2) the morphology control, and 3) the adequate crosslinking [1, 2]. The selection of polymer matrix of PEM for direct methanol fuel cells (DMFCs) is very important because the proton conductivity and methanol permeability are largely dependent upon the properties of polymers.(omitted)

  • PDF

Study on the Characteristics of Methanol Steam Reformer Using Latent Heat of Steam (수증기의 잠열을 이용한 메탄올 수증기 개질기의 특성 연구)

  • CHEON, UKRAE;AHN, KANGSUB;SHIN, HYUNKHIL
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.1
    • /
    • pp.19-24
    • /
    • 2018
  • Fuel cells are used to generate electricity with a reformer. In particular, methanol has various advantages among the fuels for reformer. Methanol steam reformer devices can efficiently supply hydrogen to PEM fuel cell. This study investigated the optimal operation conditions of a methanol steam reforming process. For this purpose, aspen HYSYS was used for the optimization of reforming process. The optimal operating condition could be designed by setting independent variables such as temperature, pressure and steam to carbon ratio (SCR). The optimal temperature and steam to carbon ratio were $250-270^{\circ}C$ and 1.3-1.5, respectively. It is advantageous to operate at a pressure of 15-20 barg, considering the performance of the hydrogen purifier. In addition, a heat exchange network was designed to supply heat constantly to reformer through the latent heat of steam.

CO Selox Reaction Using Y-type Zeolite Catalytic Membranes

  • Bemardo, P.;Algieri, C.;Barbieri, G.;Drioli, E.
    • Korean Membrane Journal
    • /
    • v.8 no.1
    • /
    • pp.13-20
    • /
    • 2006
  • The production of CO-free hydrogen streams for feeding PEM-Fuel Cells using catalytic zeolite membrane reactors was analysed by means of selective oxidation. Tubular FAU (Na-Y) zeolite membranes, prepared by a secondary growth method and Pt-loaded, were used in a flow-through MR configuration. The catalytic tests were carried out at $200^{\circ}C$ and at different pressures with a simulated dry reformate shifted gas mixture ($H_2$ ca. 60%, CO 1 %, plus $O_2,\;N_2,\;CO_2$). The operative $O_2/CO$ stoichiometric equivalent feed ratio was ${\lambda}= 2$. These catalytic tests, reducing the CO concentration down to $10{\sim}50$ ppm, verified the possibility of MR integration after using a low temperature water-gas shift unit of a fuel processor to convert hydrocarbons into hydrogen-rich gas.

Preparation of Platinum catalysts for PEM Fuel cells

  • Sasikumar G.;Ryu H.
    • 한국전기화학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.189-192
    • /
    • 2003
  • In this work, we have prepared platinum catalyst by various methods, investigated fuel cell performance and compared performance with commercially available $20\%$ Pt supported on carbon (Pt/C) catalyst. We have found that Pt/C prepared by reduction of chloroplatinic acid in mixed solvent (water+ethylene glycol) gives better performance compared to that produced by reduction of aqueous chloroplatinic acid, which can be attributed to smaller catalyst particle size and lower agglomeration in the mixed solvent. We have also prepared a novel platinum electrocatalyst by depositing platinum on Nafion coated carbon powder and it shows great promise. The performance of electrode prepared using $20\%Pt$ onn Nafion coated carbon mixed with Pt/C was found to be higher than the performance of electrodes using commercially available $20\%$ Pt/C, up to a current density of about $1100mA/cm^2$. The cell voltages obtained were respectively 621 and 603mV, at a current density of: $1000mA/cm^2$, in a single cell using $0.25mgPt/cm^2$ and Nafion 10035 membrane at $80^{\circ}C$ using hydrogen/oxygen reactants at 1 atm pressure.

  • PDF