• Title/Summary/Keyword: PEM fuel cells

Search Result 110, Processing Time 0.027 seconds

Fabrication and Testing of Glass Bipolar Plates for Application on Micro PEM Fuel Cells (마이크로 연료 전지를 위한 유리 바이폴라 플레이트의 제작 방법 및 성능 평가)

  • Jang, Bo-Sun;Lee, Jong-Kwang;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.289-292
    • /
    • 2009
  • The fabrication method of glass bipolar plates for micro PEM fuel cell application has been established and performance evaluation has been carried out. The advantages of glass bipolar plates for micro PEM fuel cells are light weight, high chemical resistivity, and easy manufacture. The MEMS fabrication process of anisotropic wet etching, thermal & UV bonding along with metal layer deposition has been introduced. From performance evaluation, it was shown that the micro fuel cell with a metal layer deposited on the reactive area yielded higher power density than the one without it. But both power densities of the two cases showed out to be adequate with the current status of micro fuel cell technology.

  • PDF

Characterization of Nitrogen Gas Crossover in PEM Fuel Cell Stacks (고분자 연료전지 스택에서 질소 크로스오버 특성에 관한 연구)

  • Baik, Kyung-Don;Kim, Min-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2227-2230
    • /
    • 2008
  • Crossover of nitrogen from cathode to anode is inevitable in typical membranes used in PEM fuel cells. This crossovered nitrogen accumulates in anode recirculation system and excessive buildup of nitrogen in the recirculating anode gas lowers the hydrogen concentration and finally affects the performance of fuel cell stacks. In this study, characterization of nitrogen gas crossover was investigated in PEM fuel cell stacks. The mass spectroscopy (MS) has been applied to measure the amount of the crossovered nitrogen at the exit of anode. Results show that anode and cathode stoichiometric number ($SR_c$) have a big effect of nitrogen crossover.

  • PDF

Investigation of Water Droplet Behaviour on GDL Surface and in the Air Flow Channel of a PEM Fuel Cell under Flooding Conditions (플러딩 조건 하에서의 고분자전해질형 연료전지 GDL 표면과 공기극 유로 채널에서의 물방울 유동 특성 고찰)

  • kim, Hansang;Min, Kyoungdoug
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.5
    • /
    • pp.476-483
    • /
    • 2012
  • Proper water management is crucial for the efficient operation of polymer electrolyte membrane (PEM) fuel cell. Especially, for automotive applications, A novel water management that can avoid both membrane dry-out and flooding is a very important task to achieve good performance and efficiency of PEM fuel cells. The aim of this study is to investigate the liquid water behavior on the gas diffusion layer (GDL) surface and in the cathode flow channel of a PEM unit fuel cell under flooding conditions. For this purpose, a transparent unit fuel cell is devised and fabricated by modifying the conventional PEM fuel cell design. The results of water droplet behavior under flooding conditions are mainly presented. The water distributions in the cathode flow channels with cell operating voltage are also compared and analyzed. Through this work, it is expected that the data obtained from this fundamental study can be effectively used to establish the basic water management strategy in terms of water removal from the flow channels in a PEM fuel cell stack.

CFD analysis on the behavior of liquid water in flow channel of PEM fuel cell (PEM 연료전지 유로에서 물의 거동에 대한 CFD 해석)

  • Kim, Hyun-Il;Nam, Jin-Hyun;Shin, Dong-Hoon;Chung, Tae-Yong;Kim, Young-Gyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.23-26
    • /
    • 2007
  • Liquid water in flow channel is an important factor that limits the steady and transient performance of PEM fuel cells. A computational fluid dynamics study based on the volume-of-fluid (VOF) multi-phase model is conducted to understand the transport behavior of liquid water in flow channel. The liquid water transport in $180^{\circ}$ bends is investigated and the effect of chamfering is discussed. The effect of wall adhesion is also considered by varying the contact angle of channel surfaces. The result of this study is believed to provide a useful guideline for design optimization of flow patterns or channel configurations of PEM fuel cells.

  • PDF

Optimal Sizing of the Manifolds in a PEM Fuel Cell Stack using Three-Dimensional CFD Simulations (3차원 CFD 시뮬레이션을 활용한 고분자전해질 연료전지 스택의 매니폴드 크기 최적화)

  • Jeong, Jeehoon;Han, In-Su;Shin, Hyun Khil
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.5
    • /
    • pp.386-392
    • /
    • 2013
  • Polymer electrolyte membrane (PEM) fuel cell stacks are constructed by stacking several to hundreds of unit cells depending on their power outputs required. Fuel and oxidant are distributed to each cell of a stack through so-called manifolds during its operation. In designing a stack, if the manifold sizes are too small, the fuel and oxidant would be maldistributed among the cells. On the contrary, the volume of the stack would be too large if the manifolds are oversized. In this study, we present a three-dimensional computational fluid dynamics (CFD) model with a geometrically simplified flow-field to optimize the size of the manifolds of a stack. The flow-field of the stack was simplified as a straight channel filled with porous media to reduce the number of computational meshes required for CFD simulations. Using the CFD model, we determined the size of the oxidant manifold of a 30 kW-class PEM fuel cell stack that comprises 99 cells. The stack with the optimal manifold size showed a quite uniform distribution of the cell voltages across the entire cells.

CFD Analysis on Two-phase Flow Behavior of Liquid Water in Cathode Channel of PEM Fuel Cell (PEM 연료전지 공기극 유로에서 물의 가동에 대한 CFD 해석)

  • Kim, Hyun-Il;Nam, Jin-Hyun;Shin, Dong-Hoon;Chung, Tae-Yong;Kim, Young-Gyu
    • New & Renewable Energy
    • /
    • v.3 no.4
    • /
    • pp.8-15
    • /
    • 2007
  • Liquid water in flow channel is an important factor that limits the steady and transient performance of PEM fuel cells. A computational fluid dynamics study based on the volume-of-fluid [VOF] multi-phase model was conducted to understand the two-phase flow behavior of liquid water in cathode gas channels. The liquid water transport in $180^{\circ}{\Delta}$ bends was investigated, where the effects of surface characteristics (hydrophilic and hydrophobic surfaces], channel geometries (rectangular and chamfered corners], and air velocity in channel were discussed. The two-phase flow behavior of liquid water with hydrophilic channel surface and that with hydrophobic surface was found very different; liquid water preferentially flows along the corners of flow channel in hydrophilic channels while it flows in rather spherical shape in hydrophobic channels. The results showed that liquid water transport was generally enhanced when hydrophobic channel with rounded corners was used. However, the surface characteristics and channel geometries became less important when air velocity was increased over 10m/s. This study is believed to provide a useful guideline for design optimization of flow patterns or channel configurations of PEM fuel cells.

  • PDF

Moldability of graphite composite bipolar plate for PEM fuel cell (PEM 연료전지 분리판용 흑연입자 복합재의 성형성 평가)

  • Lee H.S.;Kim S.G.;Kim H.S.;Ahn S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.89-90
    • /
    • 2006
  • The bipolar plate is a major component of the PEM fuel cell stack, which takes a large portion of stack cost. In this study, as alternative materials fur bipolar plate of PEM fuel cells, graphite composites were fabricated by compression molding. Graphite particles mixed with epoxy resin were used as the main substance to provide electric conductivity. Flow channels were fabricated by compression molding, and design of experiments (DOE) was applied to the tests to evaluate moldability. Results showed that land width and channel depth were two significant factors for moldability, and channel width had little influence on the moldability.

  • PDF

Comparison of fabrication cost of composite bipolar plates for PEM fuel cell: compression molding and machining (PEM 연료전지용 복합재 분리판의 제작비용 비교: 압축성형과 기계식 가공)

  • Lee, Hee-Sub;Chu, Won-Shik;Kang, Yun-Cheol;Kang, Hyuk-Jin;Ahn, Sung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.105-108
    • /
    • 2006
  • The fuel cell is one of the promising environment-friendly energy sources for the next generation. The fuel cell provides good energy efficiency above 40% without pollution or noise. Different fuel cell types are usually distinguished by the kind of electrolyte. Among these, the proton exchange membrane fuel cell (PEMFC) has advantages of high power density. low operating temperature, relatively quick start-up, and rapid response to varying loads. The bipolar plate is a major component of the PEM fuel cell stack, and it takes a large portion of stack volume, weight and cost. In this study, as alternative materials for bipolar plate of PEM fuel cells, graphite composites were fabricated by compression molding and by machining. Graphite particles mixed with epoxy resin were used as the main substance to provide electric conductivity. Flow channels were fabricated by compression molding with design of experiments (DOE) to evaluate moldability. The cost for compression molding of graphite-composite bipolar plate was compared with machining cost to make the same bipolar plate.

  • PDF

Characterization of Nitrogen Gas Crossover in PEM Fuel Cell Stacks (고분자 연료전지 스택에서 질소 크로스오버 특성에 관한 연구)

  • Baik, Kyung-Don;Kim, Min-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.3
    • /
    • pp.207-214
    • /
    • 2009
  • Crossover of nitrogen from cathode to anode is inevitable in typical membranes used in PEM fuel cells. This crossovered nitrogen normally accumulates in the hydrogen recirculation system at anode side channels. Excessive buildup of nitrogen in the anode side lowers the relative hydrogen concentration and finally affects the performance of fuel cell stack. So it is very important to analysis the nitrogen gas crossover at various operating conditions. In this study, characterization of nitrogen gas crossover in PEM fuel cell stack was investigated. The mass spectroscopy (MS) has been applied to measure the amount of the crossovered nitrogen gas at the anode exit. Results show that nitrogen gas crossover rate was affected by current density, anode and cathode stoichiometric ratio and operating pressure. Current density, anode stoichiometric ratio and anode operating pressure do not affect nitrogen crossover rate but anode exit concentration of nitrogen. Cathode pressure and stoichiometric ratio largely affect the nitrogen crossover rate.

Review on Proton Exchange Membranes for Microbial Fuel Cell Application (미생물 연료 전지 적용을 위한 양성자 교환막에 대한 검토)

  • Kim, Ji Min;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.30 no.4
    • /
    • pp.213-227
    • /
    • 2020
  • As unrenewable energy resources have depleted over the years, the demand for renewable energy has increased promoting research for more effective methods to produce renewable energy. The field of fuel cell development, specifically microbial fuel cells (MFCs), has developed because of the dual performance potential of the technology. MFCs convert power by facilitating electrode-reducing organisms such as bacteria (microbes) as a catalyst to produce electrical energy. MFCs use domestic and industrial wastewater as fuel to initiate the process, purifying the wastewater as a result. Proton exchange membranes (PEM) play a crucial role in MFCs as a separator between the anodes and cathodes chambers allowing only protons to effectively pass through. Nafion is the commercially used PEM for MFCs, but there are many setbacks: such as cost, production time, and less effective proton conductivity properties. In this review there will be largely two parts. Firstly, several newly developed PEM are discussed as possible replacements of Nafion. Secondly, MFC based on PEM, blended PEM and composite PEM are summarized.