• Title/Summary/Keyword: PEHFC

Search Result 2, Processing Time 0.019 seconds

Operation Characteristics of 5 kW Class Proton-Exchange-Membrane Fuel Cell(PEMFC) Stack (5 kW급 고분자 전해질 연료전지 스택의 운전 특성)

  • Kim, Jae-Dong;Lee, Jung-Woon;Park, Dal-Ryung
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.1 s.34
    • /
    • pp.51-54
    • /
    • 2007
  • 78-cell proton exchange membrane fuel cell(PEMFC) stack with an effective electrode area of $295cm^{2}$ were investigated its operational characteristics and effects of CO poisoning. When power output, 5.4 kW, was released at current density of $325mA/cm^{2}$ for 6 hours, stablility of each cell was showed the small deviation of 2.3%. Carbon monoxide is a conventional contaminant in the fuel obtained from reforming processes with an important influence on the performance of the PEMFC. The studies of continuous injection of CO presented (5-20 ppm) with the time gave information about poisoning and recovery processes of the stack.

  • PDF

Numerical analysis of the shape effect on PEMFC's Performace (연료전지 성능에 영향을 미치는 채널형상에 대한 연구)

  • Kim, K.J.;Jeon, Yu-Taek;Kim, Hyo-Gyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.59-62
    • /
    • 2006
  • Formability is requested to successfully develop of a metal bipolar plate for mass production. From this point of view, wider channel and land width is more helpful to improve formability. But the performance of the fuel cell can be affected by its channel and land shape. So it is very important to select proper channel and land shape not to deteriorate the fuel cell performance. In this work, 3-dimensional, non-isothermal numerical simulation was performed to analyse the effects of channel and land width on the fuel cell performance. 3 types of straight channel were selected for the numerical simulation. The simulation results reveal that wide channel and land width lower fuel cell performance and decrease voltage at a high current density region. Water activity, temperature, oxygen concentration distributions were investigated to find the reasons of performance degradation. The results show that wide channel and land width give an bad effect on fuel cell performance because of low cool ins efficiency and lack of oxygen gas under the land.

  • PDF