• Title/Summary/Keyword: PEG linkers

Search Result 3, Processing Time 0.018 seconds

Role of polyethylene glycol (PEG) linkers: trends in antibody conjugation and their pharmacokinetics

  • Kondapa Naidu Bobba;Abhinav Bhise;Subramani Rajkumar;Woonghee Lee;Jeongsoo Yoo
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.6 no.2
    • /
    • pp.155-164
    • /
    • 2020
  • Polyethylene glycol (PEG) has been the most commonly used polymer for the past few decades in the field of biomedical applications due to its gold standard stealth effect. PEGylation of antibody-drug conjugates, liposomes, peptides, nanoparticles, and proteins is done to improve their pharmaceutical efficacy and pharmacokinetic properties. PEGylation of antibodies with various PEG linkers improves targeting ability by increasing the blood circulation time and thus enhances the biodistribution profiles. It also assists in minimizing the immediate capture by the reticuloendothelial system. In this review, we summarize the effect of PEG linkers in an antibody conjugation and their pharmacokinetics in the field of biomedical imaging.

Improvement of Physical Properties for Edible Films from Alaska Pollack Protein (명태 단백질로 제조한 가식성 필름의 물성 개선)

  • Mok Jong Soo;Song Ki Cheol;Kang Chang Su;Chang Soo Hyun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.4
    • /
    • pp.417-423
    • /
    • 2002
  • The edible films were prepared from the protein of alaska pollack, Theragra chalcogrmma. Effects of plasticizer, cross linker and laminated film on physical properties such as tensile strength (TS), elongation (E) and water vapor permeability (WVP) of films were investigated. In adding various kinds of plasticizers, TS of the films prepared with propylene glycol (PG) was the highest, and followed sorbitol, polyethylene glycol 200 (PEG 200) and glycerol. Elongation of the films prepared with glycerol was the highest, then sorbitol, PEG 200 and PG. WVP of films showed lower in order of PG, sorbitol, glycerol and PEG 200.75 decreased with the increment of plasticizer concentration, but elongation increased, The addition of both PG and PEG 200 effected weakly on elongation, so they were inadequate as plasticizer for the film. Mixtures of glycerol and sorbitol, which showed opposing both TS and elongation in the films, could control the physical properties of the films. With increasing relative humidity, TS decreased, while elongation and equilibrium moisture content increased. By adding the cross linkers such as ascorbic acid, citric acid and succinic acid, TS and m of films increased, while elongation decreased. Ascorbic acid, citric acid, succinic acid were most effective for TS at 0.2, 0.1 and $0.1\%, respectively. Laminated film with alaska pollack protein and corn zein improved TS above two times, reduced WVP about $20\~30\%$, as compared with the Elm from alaska pollack protein. Two films did not show the difference to oxygen permeability, but they showed about tenfold greater oxygen resistance than polyethylene film. Laminated film showed higher b and $\Delta$E value of color difference, lower a and L value than the film from alaska pollack protein.

Edible Films from Protein Concentrates of Rice Wine Meal (주박 단백질 농축물로부터 가식성필름의 제조)

  • Cho, Seung-Yong;Park, Jang-Woo;Rhee, Chul
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.1097-1106
    • /
    • 1998
  • Biodegradable edible films were prepared from rice protein concentrates (RPC) made from rice wine meal by alkaline extraction and isoelectric precipitation. The effect of film forming solution pH and plasticizers were studied, and cross-linkers were added to improve mechanical properties and water vapor permeabilities (WVP) of films. Films could be formed within pH $8{\sim}11$ with tensile strength (TS) of 4.3{\sim}5.7\;MPa$. Films produced under pH 11 had the highest TS (5.7 MPa) and the lowest WVP $(0.44\;ng{\cdot}m/m^2{\cdot}s{\cdot}Pa)$. Added glycerol, polyethylene glycol 200 (PEG) and its mixture (GLY:PEG=50:50) as plasticizers also affected the mechanical properties and WVP of films. TS and elongation at break (E) of films at various plasticizer levels were $5.5{\sim}1.0\;MPa$ and $3.6{\sim}24.3%$, respectively. At the same plasticizer concentration, the highest TS was observed when glycerol was used whereas the highest E was measured when mixture was used as plasticizer. WVPs of films with thickness of $60\;{\mu}m$ were $0.39{\sim}0.54\;ng{\cdot}m/m^2{\cdot}s{\cdot}Pa$. WVP of films decreased as the ratio of glycerol/PEG 200 was decreased, and WVP increased as the total amount of plasticizer added to the films increased. Film strength was improved by the addition of small amount of sodium hydrogen sulfate, succinic anhydride, ascorbic acid and citric acid, whereas TS of films containing $0.5{\sim}2.0%$ of NaCl and $CaCl_2$ were lower than those without the salts. The highest TS (6.3 MPa) was achieved with films containing 0.1% of succinic anhydride.

  • PDF