• 제목/요약/키워드: PEDF

검색결과 3건 처리시간 0.014초

금 나노입자의 VEGF에 의해 유발된 혈관 내피세포의 신생혈관형성 억제 효과 (Antiangiogenic Effects of Gold Nanoparticles VEGF-induced Vascular Endothelial Cells)

  • 최승현;유근창;김인숙;채수철
    • 환경생물
    • /
    • 제28권1호
    • /
    • pp.14-19
    • /
    • 2010
  • 신생혈관 형성은 세포의 성장 및 상처 치유 과정에서 중요한 현상이다. 그러나 성장인자의 불균형은 시각 및 면역질환과 같은 다양한 질환을 야기한다. 이러한 질환을 치료하는 방법 중 신생혈관 형성을 억제하는 것이 중요한 방법 중 하나이다. AuNPs의 기능과 기전이 신생혈관 형성에 있어서 아직 밝혀진 바가 없다. 현재 PEDF가 항신생혈관 형성 물질로 제안되고 있다. 본 연구에서 우리는 AuNPs가 BRECs에서 VEGF로 유도된 세포의 증식 및 이동, 신생혈관의 형성을 억제하였고 이는 세포의 성장과 침윤 및 전이와 관련된 신생혈관 형성을 억제한다고 사료된다.

Human Apolipoprotein E2 Transgenic Mice Show Lipid Accumulation in Retinal Pigment Epithelium and Altered Expression of VEGF and bFGF in the Eyes

  • Lee, Sung-Joon;Kim, Jeong-Hun;Kim, Jin-Hyoung;Chung, Mi-Ja;Wen, Qingcheng;Chung, Hum;Kim, Kyu-Won;Yu, Young-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권6호
    • /
    • pp.1024-1030
    • /
    • 2007
  • We investigated the human apolipoprotein E2 (apoE2) transgenic mouse as an animal model system for age-related macular degeneration (AMD). Transgenic mice expressing human apoE2 and C57BL/6J mice were fed normal chow or a high-fat diet for 4 weeks. Eyes were collected from the mice and lipid deposits in retinal pigment epithelium (RPE) were assessed using electron microscopy. The expressions of apoE, vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and pigment-epithelium derived factor (PEDF), which are molecular markers for angiogenesis, were assessed with immunohistochemistry. Eyes from apoE2 mice, regardless of diet, contained lipid accumulation in RPE under electron microscopy, whereas control C57BL/6J eyes did not. Lipid accumulation was found predominantly in the RPE and the Bruch's membrane and increased in the eyes of apoE2 mice after one month of a high-fat diet ($8{\pm}2\;per\;50{\mu}m^2$ for normal chow and $11{\pm}2\;per\;50\;{\mu}m^2,\;p<0.05)$. ApoE expression was similar in the apoE2 and control mice; however, VEGF and bFGF were overexpressed in the retinal pigment epithelium of apoE2 eyes compared with control eyes, and PEDF expression was slightly decreased. These expression patterns of VEGF, bFGF, and PEDF suggest angiogenesis is progressing in apoE2 eyes. In conclusion, the eyes of apoE2 mice develop typical lipid accumulations, a common characteristic of AMD, making them a suitable animal model for AMD. The expression profile of VEGF and bFGF on the retinal pigment epithelium suggests that apoE2 may induce neovascularization by altering angiogenic cytokines.

Modulated Gene Expression of Toxoplasma gondii Infected Retinal Pigment Epithelial Cell Line (ARPE-19) via PI3K/Akt or mTOR Signal Pathway

  • Zhou, Wei;Quan, Juan-Hua;Gao, Fei-Fei;Ismail, Hassan Ahmed Hassan Ahmed;Lee, Young-Ha;Cha, Guang-Ho
    • Parasites, Hosts and Diseases
    • /
    • 제56권2호
    • /
    • pp.135-145
    • /
    • 2018
  • Due to the critical location and physiological activities of the retinal pigment epithelial (RPE) cell, it is constantly subjected to contact with various infectious agents and inflammatory mediators. However, little is known about the signaling events in RPE involved in Toxoplasma gondii infection and development. The aim of the study is to screen the host mRNA transcriptional change of 3 inflammation-related gene categories, PI3K/Akt pathway regulatory components, blood vessel development factors and ROS regulators, to prove that PI3K/Akt or mTOR signaling pathway play an essential role in regulating the selected inflammation-related genes. The selected genes include PH domain and leucine- rich-repeat protein phosphatases (PHLPP), casein kinase2 (CK2), vascular endothelial growth factor (VEGF), pigment epithelium-derived factor (PEDF), glutamate-cysteine ligase (GCL), glutathione S-transferase (GST), and NAD(P)H: quinone oxidoreductase (NQO1). Using reverse transcription polymerase chain reaction (RT-PCR) and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), we found that T. gondii up-regulates PHLPP2, $CK2{\beta}$, VEGF, GCL, GST and NQO1 gene expression levels, but down-regulates PHLPP1 and PEDF mRNA transcription levels. PI3K inhibition and mTOR inhibition by specific inhibitors showed that most of these host gene expression patterns were due to activation of PI3K/Akt or mTOR pathways with some exceptional cases. Taken together, our results reveal a new molecular mechanism of these gene expression change dependent on PI3K/Akt or mTOR pathways and highlight more systematical insight of how an intracellular T. gondii can manipulate host genes to avoid host defense.