• Title/Summary/Keyword: PDP (Plasma Display Panel)

Search Result 564, Processing Time 0.028 seconds

Development of High-definition PDP(Plasma Display Panel) Barrier Ribs Using Watersoluble UV-curing Resin (수용성 UV경화성 수지를 이용한 고품질 PDP용 격벽제작 기술 개발)

  • Nam, Su-Yong;Woo, Jin-Ho;Lee, Mi-Young;Lee, Gab-Hee;Kim, Goang-Young
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.21 no.2
    • /
    • pp.67-74
    • /
    • 2003
  • Barrier ribs for PDP(plasma display panel) are commonly utilized to have uniform height and width and to prevent opical crosstalk between adjacent cells. The requirements for such barrier ribs are uniform height and shape, low outgassing rate and low porosity, high aspect ratio, and fine resolution. In this study, we are studied about that to make efficiency of material and high quality barrier ribs for PDP. As a result, could got high barrier ribs of $140{\mu}m$ evenly in 1th phenomenon using watersoluble UV curing resin and know that flatness of upper part is also very good.

  • PDF

Measurement of Luminance and Luminous Efficiency of Plasma Display Panel (플라즈마 디스플레이 패널의 휘도 및 발광효율의 측정)

  • Ku, Chi-Wuk;Lee, Hyeong-Goo;Choi, Young-Sup;Ko, Kwang-Cheol;Kang, Hyung-Boo;Jung, Kyu-Sun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2218-2220
    • /
    • 1999
  • Plasma Display Panel(PDP) has mirco-cell, so it is difficult to know the physical properties of particles in PDP cell. To know this, we made a cell that is 200 times as large as a general PDP cell. Using this cell, the temperature and the density of electrons have been measured by the fast scanning probe.

  • PDF

A new high performance energy-recovery circuit for a plasma display panel (PDP을 위한 새로운 고성능 에너지 회로 회수)

  • Kim, Tae-Sung;Han, Sang-Kyoo;Moon, Gun-Woo;Youn, Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.399-401
    • /
    • 2005
  • A new high performance energy-recovery circuit (ERC) for a plasma display panel (PDP) is proposed. Two different ERCs are employed on both sides of the PDP, and slow falling and fast rising times are applied. It features a zero voltage switching (ZVS), low electromagnetic interference (EMI), low current stress, high efficiency, no severe voltage notch, reduced sustaining voltage, and high energy-recovery capability.

  • PDF

Thermal Behaviors of Ag Conductive Thick Film with Firing Temperature for Plasma Display Panel (PDP용 Ag 전도성 후막의 열적거동)

  • Hwang, Seong-Jin;Lee, Sang-Wook;Kim, Hyung-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.278-278
    • /
    • 2007
  • Ag conductive thick film has been used in bus and address electrodes of PDP (Plasma display panel). In PDP fabrication, the firing temperature of electrode is normally $550{\sim}580^{\circ}C$. For the application of PDP industry, we investigated an Ag conductive thick film with firing temperature. Low melting glass frit was used in the conductive thick film. The thermal properties of Ag and frit were determined by a hot stage microscopy. Based on the our results, we suggest that the Ag conductive thick film should be considered of the firing temperature which is correlated to the shrinkage, conductivity, and shape of thick film.

  • PDF

The Optimization of AC-PDP Cell by 2D Simulations

  • Kim, Woong;Y.K. Shin;C.H. Shon;J.H. Kang;Park, J.S.;Lee, J.K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.227-227
    • /
    • 1999
  • Plasma display panel(PDP) is a leading technology for large-area flat panel displays. A current issue in operating the PDP cell is that the efficiency of the PDP cell is very low. To increase the efficiency of the PDP cell, the visible light needs to be maximized and the power consumption minimized. Since the excited xenons are related to the production of the visible light, it is important to optimize the cell geometry and the gas composition that produce the excited xenons more efficiently. A 2D-fluid code (FL2P) is developed and used to simulate the plasma dynamics and the radiation transport in the PDP cell. The cell is optimized with the code for various operating conditions and cell dimensions such as the voltage pulse, electrode length, electrode spacing, gap size, dielectric constant, gas mixture ratio, pressure, and pulse duration.

  • PDF

Low Cost Power System Design for Plasma Display Panel(PDP)

  • Yoo, Kwang-Min;Lee, Jun-Young;Lim, Sung-Kyoo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.250-255
    • /
    • 2006
  • A low cost PDP sustain power supply is proposed based on flyback topology using Boundary Conduction Mode(BCM) to control input current regulation. This method guarantees DCM condition to regulate the input current harmonics under all load conditions. An excessive voltage stress due to the link voltage increase can be suppressed by removing link capacitor and adjusting transformer turns ratios, which makes it possible to be used for universal line applications. The proposed converter is tested with a 400W(200V-2A output) prototype circuit.

  • PDF

A New High Efficiency DC/DC Converter with Wide ZVS Range for PDP Sustain Power Module (PDP 유지전원단을 위한 넓은 영전압 스위칭 범위를 갖는 새로운 고효율 DC/DC 컨버터)

  • Park Ki-Bum;Kim Chong-Eun;Moon Gun-Woo;Youn Myung-Joong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.177-185
    • /
    • 2005
  • A new high efficiency DC/DC converter is proposed, which is derived from the conventional asymmetric half-bridge converter. Because the proposed converter has better ZVS condition compared with the conventional asymmetric half-bridge converter, it shows a high efficiency along the wide load range. In this paper, the basic operations of the proposed converter is analyzed and compared with that of the conventional half-bridge converter, and the excellent performance of the proposed converter is verified by the experimental results with the 425W, 385-170Vdc prototype of the power supply for PDP (Plasma Display Panel) Sustain Driver of PDP TV.

A Study on the Sputtering-resistant Properties of MgO Thin-film in the AC Plasma Display Panel (PDP) (AC Plasma Display Panel (PDP)에서 MgO 박막의 내스퍼터성에 관한 연구)

  • Ji, Seong-Won;Yeo, Jae-Yeong;Lee, U-Geun;Jo, Jeong-Su;Park, Jeong-Hu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.5
    • /
    • pp.361-366
    • /
    • 1999
  • The life of AC PDP depends largely on the sputtering-resistant property of the protecting layer such as MgO thin-film. However, it is very difficult to measure the sputtering-resistant property in the stable driving conditions of AC PDP. In this paper we have suggested a high speed measurement technique of the sputtering-resistant property of MgO thin-film by applying the MgO thin-film as the target of RF magnetron sputtering system. We have also applied this method to the e-beam MgO and sputter-MgO and e-beam MgO superior to sputter-MgO 3 times over. Also, the relation of Xe gas partial pressure(X) and sputtered thickness(Y) was Y=3.4X+13.5.

  • PDF

The three-dimensional temporal behavior measurement of light emitted from plasma display panel by the Scanned Point-Detecting System (Scanned Point-Detecting System을 이용한 플라즈마 디스플레이 패널에서 방출되는 광의 3차원 시간 분해 측정)

  • 최훈영;이석현;이승걸;김준엽
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.6
    • /
    • pp.559-563
    • /
    • 2002
  • We measure the 3-dimensional temporal behavior of the light emitted from the discharge cell of a plasma display panel (PDP) by using a scanned point detecting system. The light signal detected by a PM tube is sent to the oscilloscope, and the oscilloscope is connected to a PC with GPIB. From the resultant temporal behaviors, we could analyze the discharge characteristics of the panel with a Ne-Xe (4%) mixing gas at a 400 torr pressure. The top view of the panel shows that discharge moves from the inner edge of the cathode electrode to the outer cathode electrode, forming an arc shape. The side view of the panel shows that the light is detected up to 150 $\mu\textrm{m}$ up the barrier rib. After a trigger pulse is applied, peak intensity is detected at 730 ns and peak intensity position is located at the center of the ITO electrodes.

Analysis of Heating System for PDP Panel Using $RADCAD^{TM}$ ($RADCAD^{TM}$를 이용한 PDP용 Pane 1 가열 시스템 해석)

  • Kim, Ook-Joong;Hong, Yong-Ju;Park, Young-Sun
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.453-458
    • /
    • 2001
  • Analysis of radiation heating system for producing 60" size PDP panels was carried out using $RADCAD^{TM}$ software. Optimum arrangement of infrared heating elements was found to obtain uniform temperature distribution in PDP panel during heating. Heating capacity of each heater was determined to obtain an appropriate maximum panel temperature. Parametric study to find the effect of design parameters such as the thermophysical and optical properties of glass and cooling system was carried out. As a reference system, about 35 kW heating capacity was chosen to obtain about 800 K maximum panel temperature after 30 minute heating. The maximum temperature difference in panel was below 20 K. The maximum/minimum and its difference in the panel were very sensitive to the variation of the emissivity of glass and cooling block.

  • PDF