• Title/Summary/Keyword: PDMS (Polydimethylsiloxane) coating

Search Result 43, Processing Time 0.027 seconds

Study on Correlation Between the Internal Pressure Distribution of Slit Nozzle and Thickness Uniformity of Slit-coated Thin Films (슬릿 노즐 내부 압력 분포와 코팅 박막 두께 균일도 간의 상관관계 연구)

  • Gieun Kim;Jeongpil Na;Mose Jung;Jongwoon Park
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.19-25
    • /
    • 2023
  • With an attempt to investigate the correlation between the internal pressure distribution of slit nozzle and the thickness uniformity of slot-coated thin films, we have performed computational fluid dynamics (CFD) simulations of slit nozzles and slot coating of high-viscosity (4,800 cPs) polydimethylsiloxane (PDMS) using a gantry slot-die coater. We have calculated the coefficient of variation (CV) to quantify the pressure and velocity distributions inside the slit nozzle and the thickness non-uniformity of slot-coated PDMS films. The pressure distribution inside the cavity and the velocity distribution at the outlet are analyzed by varying the shim thickness and flow rate. We have shown that the cavity pressure uniformity and film thickness uniformity are enhanced by reducing the shim thickness. It is addressed that the CV value of the cavity pressure that can ensure the thickness non-uniformity of less than 5% is equal to and less than 1%, which is achievable with the shim thickness of 150 ㎛. It is also found that as the flow rate increases, the average cavity pressure is increased with the CV value of the pressure unchanged and the maximum coating speed is increased. As the shim thickness is reduced, however, the maximum coating speed and flow rate decrease. The highly uniform PDMS films shows the tensile strain as high as 180%, which can be used as a stretchable substrate.

  • PDF

A Hybrid Bilayer Pressure Sensor based on Silver Nanowire (은 나노와이어 기반 하이브리드 이중층 압력 센서)

  • Lee, Jin-Young;Shin, Dong-Kyun;Kim, Ki-Eun;Seo, Yu-Seok;Park, Jong-Woon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.3
    • /
    • pp.31-35
    • /
    • 2017
  • We have fabricated flexible and stretchable pressure sensors using silver nanowires (AgNWs) and analyzed their electric responses. AgNWs are spray coated directly onto uncured polydimethylsiloxane (PDMS) such that AgNWs penetrate into the uncured PDMS, enhancing the adhesion properties of AgNWs. However, the single-layered AgNW sensor exhibits unstable electric response and low pressure sensitivity. To tackle it, we have coated a conductive polymer, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) onto the AgNW layer. Such a hybrid bilayer sensor ensures a stable electric response because the over-coating layer of PEDOT:PSS effectively suppresses the protrusion of AgNWs from PDMS during release. To enhance the sensitivity further, we have also fabricated a stacked bilayer AgNW sensor. However, its electric response varies depending sensitively on the initial overlap pressure.

  • PDF

Silver Nanowire-based Stretchable and Transparent Electrodes (Silver Nanowire 기반 Stretchable 투명 전극)

  • Lee, Jin-Young;Kim, Su-Yeon;Jeong, Da-Hye;Shin, Dong-Kyun;Yoo, Su-Ho;Seo, Hwa-Il;Park, Jong-Woon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.3
    • /
    • pp.51-55
    • /
    • 2015
  • We have fabricated silver nanowire (AgNW) films as a stretchable and transparent electrode on polydimethylsiloxane (PDMS) substrates using a spray coater. Inherently, they show poor surface roughness and stretchability. To tackle it, we have employed a conductive polymer, poly (3,4-ethylenedioxythiophene) : Poly(styrene sulfonate) (PEDOT : PSS). PEDTO : PSS solution is mixed with AgNWs or spin-coated on the AgNW film. Compared with AgNW film only, PEDOT : PSS film only, and polymer-mixed AgNW films, the AgNW/polymer bilayer films exhibit much better surface roughness and stretchability. It is found that spray-coating of AgNWs on uncured PDMS and spin-coating of PEDOT : PSS solution on the AgNW films enhance the surface roughness of electrodes. Such a bilayer structure also provides a stable resistance under tensile strain due to the fact that each layer acts as a detour route for carriers. With this structure, we have obtained the peak-to-peak roughness ($R_{pv}$) as low as 76.8nm and a moderate increase of sheet resistance (from $10{\Omega}/{\Box}$ under 0% strain to $30{\Omega}/{\Box}$ under 40% strain).

Sandwich-structured High-sensitivity Resistive Pressure Sensor based on Silver Nanowire (샌드위치 구조를 갖는 은 나노와이어 기반 고감도 저항성 압력 센서)

  • Lee, Jinyoung;Kim, Gieun;Shin, Dongkyun;Park, Jongwoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.2
    • /
    • pp.1-5
    • /
    • 2018
  • Elastic resistive pressure sensor is fabricated by a direct spray coating of silver nanowires (AgNWs) on uncured polydimethylsiloxane (PDMS) and an additional coating of a conductive polymer, poly(3,4-ethylenedioxythiophene): poly (styrene sulfonate) (PEDOT:PSS). To improve the sensitive and stability, we have fabricated sandwich-structured AgNW/polymer sensor where two AgNW/polymer-coated PDMS films are laminated with the conducting surfaces contacted by pressure lamination. It shows a resistance decrease upon loading due to the formation of dense network of AgNWs. It is demonstrated that the sandwich-structured AgNW/polymer sensor exhibits very high sensitivity ($2.59kPa^{-1}$) and gauge factor (37.8) in the low pressure regime. It can also detect a subtle placement and removal of a weight as low as 3.4 mg, the corresponding pressure of which is about 5.4 Pa. It is shown that the protrusion of AgNWs from PDMS is suppressed substantially by the over-coated PEDOT:PSS layer, thereby reducing hysteresis and rendering the sensor more stable.

Flexible Hydrogen Sensor Using Ni-Zr Alloy Thin Film

  • Yun, Deok-Whan;Park, Sung Bum;Park, Yong-il
    • Korean Journal of Materials Research
    • /
    • v.29 no.5
    • /
    • pp.297-303
    • /
    • 2019
  • A triple-layered $PMMA/Ni_{64}Zr_{36}/PDMS$ hydrogen gas sensor using hydrogen permeable alloy and flexible polymer layers is fabricated through spin coating and DC-magnetron sputtering. PDMS(polydimethylsiloxane) is used as a flexible substrate and PMMA(polymethylmethacrylate) thin film is deposited onto the $Ni_{64}Zr_{36}$ alloy layer to give a high hydrogen-selectivity to the sensor. The measured hydrogen sensing ability and response time of the fabricated sensor at high hydrogen concentration of 99.9 % show a 20 % change in electrical resistance, which is superior to conventional Pd-based hydrogen sensors, which are difficult to use in high hydrogen concentration environments. At a hydrogen concentration of 5 %, the resistance of electricity is about 1.4 %, which is an electrical resistance similar to that of the $Pd_{77}Ag_{23}$ sensor. Despite using low cost $Ni_{64}Zr_{36}$ alloy as the main sensing element, performance similar to that of existing Pd sensors is obtained in a highly concentrated hydrogen atmosphere. By improving the sensitivity of the hydrogen detection through optimization including of the thickness of each layer and the composition of Ni-Zr alloy thin film, the proposed Ni-Zr-based hydrogen sensor can replace Pd-based hydrogen sensors.

A Study on Non-contact Surface Temperature Field Measurement of a Body Immerged in Water Using Thermographic Phosphor Thermometry (열감지인광온도계를 이용한 물에 잠긴 물체 표면 온도장의 비접촉식 측정에 관한 연구)

  • Park, Yoonseong;Cai, Tao;Kim, Kyung Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.3
    • /
    • pp.61-68
    • /
    • 2020
  • Thermographic phosphor (TP) thermometry is a noncontact optical measurement method and has been applied in many fields such as combustion and heat transfer. However, due to the limitation of bonding technology and measurement method, most TP thermometry studies were conducted only on the air environment with water-soluble binders. In this paper, a temperature measurement technology in water using TP is proposed by coatings of manganese activated magnesium fluorogermanate (Mg4FGeO6:Mn4+, MFG) with Polydimethylsiloxane (PDMS). Four MFG-PDMS coatings with different thicknesses were prepared. The lifetime of MFG was not affected by the thickness of the coating as a result of the experiment and analysis of phosphor intensity using a photomultiplier tube. To measure the surface temperature field of an immerged body in water, a cylinder-type cartridge heater was coated with MFG doped PDMS. Transient surface temperature field was successfully measured even the initial temperature is higher than the boiling point of water.

CNT-PDMS Composite Thin-Film Transmitters for Highly Efficient Photoacoustic Energy Conversion

  • Song, Ju Ho;Heo, Jeongmin;Baac, Hyoung Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.297.2-297.2
    • /
    • 2016
  • Photoacoustic generation of ultrasound is an effective approach for development of high-frequency and high-amplitude ultrasound transmitters. This requires an efficient energy converter from optical input to acoustic output. For such photoacoustic conversion, various light-absorbing materials have been used such as metallic coating, dye-doped polymer composite, and nanostructure composite. These transmitters absorb laser pulses with 5-10 ns widths for generation of tens-of-MHz frequency ultrasound. The short optical pulse leads to rapid heating of the irradiated region and therefore fast thermal expansion before significant heat diffusion occurs to the surrounding. In this purpose, nanocomposite thin films containing gold nanoparticles, carbon nanotubes (CNTs), or carbon nanofibers have been recently proposed for high optical absorption, efficient thermoacosutic transfer, and mechanical robustness. These properties are necessary to produce a high-amplitude ultrasonic output under a low-energy optical input. Here, we investigate carbon nanotube (CNT)-polydimethylsiloxane (PDMS) composite transmitters and their nanostructure-originated characteristics enabling extraordinary energy conversion. We explain a thermoelastic energy conversion mechanism within the nanocomposite and examine nanostructures by using a scanning electron microscopy. Then, we measure laser-induced damage threshold of the transmitters against pulsed laser ablation. Particularly, laser-induced damage threshold has been largely overlooked so far in the development of photoacoustic transmitters. Higher damage threshold means that transmitters can withstand optical irradiation with higher laser energy and produce higher pressure output proportional to such optical input. We discuss an optimal design of CNT-PDMS composite transmitter for high-amplitude pressure generation (e.g. focused ultrasound transmitter) useful for therapeutic applications. It is fabricated using a focal structure (spherically concave substrate) that is coated with a CNT-PDMS composite layer. We also introduce some application examples of the high-amplitude focused transmitter based on the CNT-PDMS composite film.

  • PDF

Flexible Piezoelectric Nanocomposite Generator Devices based on BaTiO3 Dendrite Nanostructure (티탄산바륨 덴드라이트 나노구조체 기반 플렉서블 압전 나노발전소자)

  • Bae, Soo Bin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.139-145
    • /
    • 2015
  • In this paper, the flexible piezoelectric nanocomposite generator(NCG) device based on $BaTiO_3$ nanostructures was fabricated via simple and low-cost spin coating method. The $BaTiO_3$ nanostructures synthesized by self-assembly reaction showed dendrite morphologies. To produce the piezoelectric nanocomposite(p-NC layer) which acts as an electric energy source in NCG device, the piezoelectric nanopowders($BaTiO_3$) were dispersed in polydimethylsiloxane(PDMS). Sequently, the p-NC layer was inserted in two dielectric layer of PDMS; these layers enabled the NCG device flexibility as well as durability prohibiting detachment(exfoliation) for significantly mechanical bending motions. The fabricated NCG device shows average maximum open circuit voltage of 6.2 V and average maximum current signals of 300 nA at 20 wt% composition of $BaTiO_3$ nanostructures in p-NC layer. Finally, the flexible energy harvester generates stable output signals at any rate of frequency which were used to operate LCD device without any external energy supply.

Prevention of Protein Loss Using A Shield Coating According to Moisture Behavior in Human Hair (수분거동 패턴에 따른 차폐막 설정을 통한 모발단백질 소실방지)

  • Song, Sang-Hun;Lim, Byung Tack;Son, Seong Kil;Kang, Nae-Gyu
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.46 no.1
    • /
    • pp.57-65
    • /
    • 2020
  • To prevent loss of hair protein during hair washing process by water through, a shield coating the pathway of water molecules was studied. Hydrophobic virgin hair, hydrophilic hair, which was damaged only methyleicosanoic acid (18-MEA) on the surface, and a repaired hair re-bound 18-MEA, were prepared and water mass changes by as heat were measured. Results showed that hydrophobic hairs followed bi-exponential function of 39 s and 151 s and other two hairs exhibited fast- and mono-exponential decay with 83 s, reflecting the extraction of water molecules without any resistance at the hydrophobic surface. On the assumption that hydrophobic surface resists an extraction of protein in water during the wash, the protein concentrations were compared from the hair of hydrophobic and hydrophilic surface. The extracted hair proteins were 179 and 148 ㎍/mL from the hair coated with hydrophilic polyethylene glycol (PEG) and hydrophobic polydimethylsiloxane (PDMS), respectively. This study suggested that hydrophobic coating on the hair surface could be used to prevent protein loss in wash, represented by LFM. In conclusion, this research provides some useful information to contribute to the development of hair washing products that can prevent protein loss in the cleaning process by granting hydrophobic coatings.

Influence of Nitrogen Doping and Surface Modification on Photocatalytic Activity of $TiO_2$ Under Visible Light

  • Jeong, Bora;Park, Eun Ji;Jeong, Myung-Geun;Yoon, Hye Soo;Kim, Young Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.130.1-130.1
    • /
    • 2013
  • We made attempts to improve photocatalytic activity of $TiO_2$ nanoparticles under visible light exposure by combining two additional treatments. N-doping of $TiO_2$ by ammonia gas treatment at $600^{\circ}C$ increased absorbance of visible light. By coating thin film of polydimethylsiloxane (PDMS), and subsequent vacuum-annealing at $800^{\circ}C$, $TiO_2$, became more hydrophilic, thereby enhancing photocatalytic activity of $TiO_2$. Four types of $TiO_2$ samples were prepared, bare-$TiO_2$, hydrophilic-modified $TiO_2$ ($h-PDMS/TiO_2$), N-doped $TiO_2$ ($N/TiO_2$) and hydrophilic-modified and N-doped $TiO_2$ ($h-PDMS/N/TiO_2$). Adsorption capability was evaluated under dark condition and photocatalytic activity of $TiO_2$ was evaluated by photodegradation of MB under blue LED (400 nm< ${\lambda}$) irradiation. N-doping on $TiO_2$ was characterized using XPS and hydrophilic modification of $TiO_2$ surface was analyzed by FT-IR spectrometer. It was found that N-doping and hydrophilic modification both had positive effect on enhancing adsorption capability and photocatalytic activity of $TiO_2$ at the same time. Particularly, N-doping enhanced visible light absorption of $TiO_2$, whereas hydrophilic surface modification increased MB adsorption capacity. By combining these two strategies, photocatalytic acitivity under visible light irradiation became the sum of individual effects of N-doping and hydrophilic modification.

  • PDF