• Title/Summary/Keyword: PDFF

Search Result 13, Processing Time 0.021 seconds

Association Between Low Muscle Mass and Non-alcoholic Fatty Liver Disease Diagnosed Using Ultrasonography, Magnetic Resonance Imaging Derived Proton Density Fat Fraction, and Comprehensive NAFLD Score in Korea

  • Lee, Hun Ju;Chang, Jae Seung;Ahn, Jhii Hyun;Kim, Moon Young;Park, Kyu-Sang;Ahn, Yeon-Soon;Koh, Sang Baek
    • Journal of Preventive Medicine and Public Health
    • /
    • v.54 no.6
    • /
    • pp.412-421
    • /
    • 2021
  • Objectives: Non-alcoholic fatty liver disease (NAFLD) is an increasingly prevalent metabolic disease. Muscle is known to influence NAFLD development. Therefore, this study aimed to determine the relationships among low muscle mass, NAFLD, and hepatic fibrosis using various definitions of low muscle mass and NAFLD diagnostic methods, including magnetic resonance imaging-based proton density fat fraction (MRI-PDFF). Methods: This cross-sectional study included 320 participants (107 males, 213 females) from the Korean Genome and Epidemiology Study on Atherosclerosis Risk of Rural Areas in the Korean General Population cohort. Muscle mass was assessed using whole-body dual-energy X-ray absorptiometry and adjusted for the height squared, body weight, and body mass index (BMI). NAFLD was diagnosed using ultrasonography (US), MRI-PDFF, and the comprehensive NAFLD score (CNS). Hepatic fibrosis was assessed using magnetic resonance elastography. Multivariable logistic and linear regression analyses were performed to determine the aforementioned associations. Results: According to US, 183 participants (57.2%) had NAFLD. Muscle mass adjusted for body weight was associated with NAFLD diagnosed using US (odds ratio [OR], 3.00; 95% confidence interval [CI], 1.70 to 5.31), MRI-PDFF (OR, 2.00; 95% CI, 1.13 to 3.53), and CNS (OR, 3.39; 95% CI, 1.73 to 6.65) and hepatic fibrosis (males: β=-0.070, p<0.01; females: β=-0.037, p<0.04). Muscle mass adjusted for BMI was associated with NAFLD diagnosed by US (OR, 1.71; 95% CI, 1.02 to 2.86) and CNS (OR, 1.95; 95% CI, 1.04 to 3.65), whereas muscle mass adjusted for height was not associated with NAFLD. Conclusions: Low muscle mass was associated with NAFLD and liver fibrosis; therefore, maintaining sufficient muscle mass is important to prevent NAFLD. A prospective study and additional consideration of muscle quality are needed to strengthen the findings regarding this association.

Speed Control of Induction Motor Using Flux Observer (자속 추정기를 이용한 유도전동기의 속도 제어)

  • Song, Ho-Bin;Seo, Yong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1203-1205
    • /
    • 2001
  • In this paper, the speed control system of induction motor was proposed using vector control algorithm and space voltage vector PWM method to improve the dynamic performance of induction motor. The control system is composed of the PDFF controller for speed control and the current controller using space voltage vector PWM technique. The high-speed calculation and processing for vector control is carried out by TMS320C31 digital signal processor and IPM. The proposed scheme is verified through digital simulations and experiments for 3.7(kw) induction motor and shows good dynamic performance.

  • PDF

Feasibility of Spin-Echo Echo-Planar Imaging MR Elastography in Livers of Children and Young Adults

  • Kim, Jin Kyem;Yoon, Haesung;Lee, Mi-Jung;Kim, Myung-Joon;Han, Kyunghwa;Koh, Hong;Kim, Seung;Han, Seok Joo;Shin, Hyun Joo
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.3
    • /
    • pp.251-258
    • /
    • 2019
  • Purpose: To assess the feasibility of the use of spin-echo echo-planar imaging (SE-EPI) magnetic resonance elastography (MRE) in livers of children and young adults. Materials and Methods: Patients (${\leq}20$ years old) who underwent 3T SE-EPI MRE were included retrospectively. Subjects were divided into three groups according to the purpose of the liver MRI: suspicion of fatty liver or focal fat deposition in the liver (FAT group), liver fibrosis after receiving a Kasai operation from biliary atresia (BA group), and hepatic iron deposition after receiving chemotherapy or transfusions (IRON group). Technical failure of MRE was defined when a stiffness map showed no pixel value with a confidence index higher than 95%, and the patients were divided as success and failure groups accordingly. Clinical findings including age, gender, weight, height, and body mass index and magnetic resonance imaging results including proton density fat fraction (PDFF), $T2^*$, and MRE values were assessed. Factors affecting failure of MRE were evaluated and the image quality in wave propagation image and stiffness map was evaluated using the appropriate scores. Results: Among total 240 patients (median 15 years, 211 patients in the FAT, 21 patients in the BA, and 8 patients in the IRON groups), technical failure was noted in six patients in the IRON group (6/8 patients, 75%), while there were no failures noted in the FAT and BA groups. These six patients had $T2^*$ values ranging from 0.9 to 3.8 ms. The image quality scores were not significantly different between the FAT and BA groups (P > 0.999), while the scores were significantly lower in the IRON group (P < 0.001). Conclusion: The 3T SE-EPI MRE in children and young adults had a high technical success rate. The technical failure was occurred in children with decreased $T2^*$ value (${\leq}3.8ms$) from iron deposition.