• Title/Summary/Keyword: PDF matching algorithm

Search Result 3, Processing Time 0.016 seconds

Adaptive Equalization using PDP Matching Algorithms for Underwater Communication Channels with Impulsive Noise (충격성 잡음이 있는 수중 통신 채널의 적응 등화를 위한 확률밀도함수 정합 알고리듬)

  • Kim, Nam-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.10B
    • /
    • pp.1210-1215
    • /
    • 2011
  • In this paper, a supervised adaptive equalization algorithm based on probability density function (PDF) matching method is introduced and its decision-feedback version is proposed for underwater communication channels with strong impulsive noise and severe multipath characteristics. The conventional least mean square (LMS) algorithm based on mean squared error (MSE) criterion has shown to be incapable of coping with impulsive noise and multipath effects commonly shown in underwater communications. The linear PDF matching algorithm, which shows immunity to impulsive noise, however, has revealed to yield unsatisfying performance under severe multipath environments with impulsive noise. On the other hand, the proposed nonlinear PDF matching algorithm with decision feedback proves in the simulation to possess superior robustness against impulsive noise and multipath characteristics of underwater communication channels.

Blind Signal Processing for Impulsive Noise Channels

  • Kim, Nam-Yong;Byun, Hyung-Gi;You, Young-Hwan;Kwon, Ki-Hyeon
    • Journal of Communications and Networks
    • /
    • v.14 no.1
    • /
    • pp.27-33
    • /
    • 2012
  • In this paper, a new blind signal processing scheme for equalization in fading and impulsive-noise channel environments is introduced based on probability density functionmatching method and a set of Dirac-delta functions. Gaussian kernel of the proposed blind algorithm has the effect of cutting out the outliers on the difference between the desired level values and impulse-infected outputs. And also the proposed algorithm has relatively less sensitivity to channel eigenvalue ratio and has reduced computational complexity compared to the recently introduced correntropy algorithm. According to these characteristics, simulation results show that the proposed blind algorithm produces superior performance in multi-path communication channels corrupted with impulsive noise.

Inversion of Acoustical Properties of Sedimentary Layers from Chirp Sonar Signals (Chirp 신호를 이용한 해저퇴적층의 음향학적 특성 역산)

  • 박철수;성우제
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.8
    • /
    • pp.32-41
    • /
    • 1999
  • In this paper, an inversion method using chirp signals and two near field receivers is proposed. Inversion problems can be formulated into the probabilistic models composed of signals, a forward model and noise. Forward model to simulate chirp signals is chosen to be the source-wavelet-convolution planewave modeling method. The solution of the inversion problem is defined by a posteriori pdf. The wavelet matching technique, using weighted least-squares fitting, estimates the sediment sound-speed and thickness on which determination of the ranges for a priori uniform distribution is based. The genetic algorithm can be applied to a global optimization problem to find a maximum a posteriori solution for determined a priori search space. Here the object function is defined by an L₂norm of the difference between measured and modeled signals. The observed signals can be separated into a set of two signals reflected from the upper and lower boundaries of a sediment. The separation of signals and successive applications of the genetic algorithm optimization process reduce the search space, therefore improving the inversion results. Not only the marginal pdf but also the statistics are calculated by numerical evaluation of integrals using the samples selected during importance sampling process of the genetic algorithm. The examples applied here show that, for synthetic data with noise, it is possible to carry out an inversion for sedimentary layers using the proposed inversion method.

  • PDF