• Title/Summary/Keyword: PDC control

Search Result 52, Processing Time 0.018 seconds

Pyruvate Dehydrogenase Kinase Protects Dopaminergic Neurons from Oxidative Stress in Drosophila DJ-1 Null Mutants

  • Lee, Yoonjeong;Kim, Jaehyeon;Kim, Hyunjin;Han, Ji Eun;Kim, Sohee;Kang, Kyong-hwa;Kim, Donghoon;Kim, Jong-Min;Koh, Hyongjong
    • Molecules and Cells
    • /
    • v.45 no.7
    • /
    • pp.454-464
    • /
    • 2022
  • DJ-1 is one of the causative genes of early-onset familial Parkinson's disease (PD). As a result, DJ-1 influences the pathogenesis of sporadic PD. DJ-1 has various physiological functions that converge to control the levels of intracellular reactive oxygen species (ROS). Based on genetic analyses that sought to investigate novel antioxidant DJ-1 downstream genes, pyruvate dehydrogenase (PDH) kinase (PDK) was demonstrated to increase survival rates and decrease dopaminergic (DA) neuron loss in DJ-1 mutant flies under oxidative stress. PDK phosphorylates and inhibits the PDH complex (PDC), subsequently downregulating glucose metabolism in the mitochondria, which is a major source of intracellular ROS. A loss-of-function mutation in PDK was not found to have a significant effect on fly development and reproduction, but severely ameliorated oxidative stress resistance. Thus, PDK plays a critical role in the protection against oxidative stress. Loss of PDH phosphatase (PDP), which dephosphorylates and activates PDH, was also shown to protect DJ-1 mutants from oxidative stress, ultimately supporting our findings. Further genetic analyses suggested that DJ-1 controls PDK expression through hypoxia-inducible factor 1 (HIF-1), a transcriptional regulator of the adaptive response to hypoxia and oxidative stress. Furthermore, CPI-613, an inhibitor of PDH, protected DJ-1 null flies from oxidative stress, suggesting that the genetic and pharmacological inhibition of PDH may be a novel treatment strategy for PD associated with DJ-1 dysfunction.

Production of Pyruvate Dehydrogenase Complex-E2 Specific Human Monoclonal Antibody in Fed-batch Culture Systems with High Cell Density Recombinant Escherichia coli (고농도 재조합 대장균의 Fed-batch 배양 시스템을 이용한 Pyruvate Dehydrogenase Complex-E2 특이성 인간 모노클론 항체의 생산)

  • 이미숙;전주미;차상훈;정연호
    • KSBB Journal
    • /
    • v.15 no.5
    • /
    • pp.489-496
    • /
    • 2000
  • Several culture systems including batch, two-stage CSTR, semi-fed batch, and two-stage cyclic fed-batch were investigated for the efficient production of the Fab fraction of PDC-E2 specific human monoclonal antibody using high cell density recombinant E. coli. A two-phase batch system and a two-stage continuous system were examined to overcome plasmid instability problems, by separating the growth and the production stages. The cell density and productivity of the two-stage continuous culture was better than that of the two-phase batch fermentation. In the two-stage continuous culture system with DO-stat, the cell growth and the productivity were superior to those of the system without the DO control. Also, almost total plasmid stability was maintained in the two-stage continuous culture system. Modified M9 medium was selected as an optimum feeding medium for the fed-batch process, and the optimum C/N ratio determined to be 2:3. The optimum feeding rate was $0.6g/\ell/hr$ for a constant feeding strategy in semi-fed batch system. When the feeding medium was fed by pulsing, it was observed that more frequent pulsing resulted in improved cell growth. The linear feeding method was the most efficient of the various feeding methods tested. Finally, high cell density culture using a two-stage cyclic fed batch system with pH-stat was tried because the linear feeding method showed limitations in terms of obtaining high cell densities, and a cell density of $54 g/\ell$ was achieved. It was concluded that the two-stage cyclic fed batch system was the most efficient system for high cell density culture of the systems tested. However, productivity improvements were lower than expected due to the extremely high accumulations of acetate, although the low levels of residual glucose were maintained.

  • PDF