• 제목/요약/키워드: PD-Fuzzy Controller

검색결과 115건 처리시간 0.029초

크리스프 타입 퍼지 제어기의 동특성 해석 (Analysis on Dynamical Behavior of the Crisp Type Fuzzy controller)

  • 권오신;최종수
    • 한국지능시스템학회논문지
    • /
    • 제5권4호
    • /
    • pp.67-76
    • /
    • 1995
  • 퍼지 제어기에 관한 최근 연구에서, 연산의 간략성을 위해 퍼지 제어 규칙의 후건부에 대하여 퍼지 집합 대신에 크리스프 값을 사용하는 크리스프 타입 퍼지 제어기 모델이 다양한 분양의 응용에 널리 이용괴고 있다. 이 논문에서는 max-min 추론법 및 product-sum 추론법에 기초한 크리스프 타입 퍼지 제어기의 동특성을 해석하였다. 해석결과, 크리스프 타입 퍼지 제어기는 근사적으로 PD 제어기와 같이 동작함을 보였다.

  • PDF

조향감을 고려한 자동차용 전동조향장치의 퍼지제어기의 개발 (Development of Fuzzy Controller for Electric Power Steering Considering Steering Feel)

  • 한창수;이명호;박호
    • 한국공작기계학회논문집
    • /
    • 제11권2호
    • /
    • pp.50-58
    • /
    • 2002
  • The test method using simulator to objectively measure the steering feel from several drivers was proposed. It has also described the ideas to analyse the principal factors affecting the steering feel of the driver using the correlation analysis of the measured data and the questionnaire. Proportional Derivative(PD) controller has been used to measure the steering feel, and the control parameters have been selected to obtain the optimal steering feel. Membership frictions of Sugeno fuzzy model are constructed from the assist torque values calculated from PD controller at each steering state. Moreover to verify the performance, this fuzzy controller has been compared with the another fuzzy controller of which membership frictions are derived from the knowledge of drivers. As a result it can be concluded that the proposed fuzzy controller improves the steering feel at each steering state more than any other conventional methods.

Investigation of PID Fuzzy Controller for Output Voltage Regulation of Current-Doubler-Rectified Asymmetric Half-Bridge DC/DC Converter

  • Chung, Gyo-Bum
    • Journal of Power Electronics
    • /
    • 제7권1호
    • /
    • pp.21-27
    • /
    • 2007
  • This paper investigates a PID fuzzy controller for output voltage regulation of a current-doubler-rectified asymmetric half-bridge (CDRAHB) DC/DC converter. The controller is a PD-type fuzzy controller in parallel with a linear integral controller. The PD type fuzzy controller is for providing the varying gain at the different operating conditions to regulate the output voltage. The linear integral controller is for removing the steady-state error of the output voltage. In order to show the outstanding dynamic characteristics of the proposed controller, PSIM simulation studies are carried out and compared to the results for which the conventional loop gain design method is used.

The Study of Gain Scheduled PD-like Fuzzy Logic Control : Application to High Maneuverable Aircraft

  • Hong, Sung-Kyung;Lee, Jung-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.141.1-141
    • /
    • 2001
  • This paper describes an approach for synthesizing a modularized gain scheduled PD type fuzzy logic controller(FLC) for a high maneuverable aircraft system, where the gains of FLC are on-line adapted according to the flight condition. Specially, the systematic procedure via root locus technique is carried out for the sellection of the gains of FLC. Simulation results demonstrate that the proposed gain scheduled fuzzy logic controller yields better control performance than the normal (without gain scheduling) fuzzy controller.

  • PDF

Design of Fuzzy PID Controllers Using Steady-state Genetic Algorithms

  • 권영섭;샤요웬동
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 추계학술대회 학술발표 논문집
    • /
    • pp.411-419
    • /
    • 1998
  • In this paper the steady-state genetic algorithm is applied for the optimal design of fuzzy PID controllers. Basically the structure of the discussed fuzzy PID controller is extended from the conventional fuzzy PI and PD controllers where only a two-dimensional rule base of the fuzzy PID controller are designed simultaneously. Simulations results shows the superior performance of this optimal designed fuzzy PID controllers to the optimal designed conventional fuzzy PI and PD controllers.

  • PDF

압전소자로 구동되는 유연성 로봇 핑거의 제어 (The Control of a flexible Robotic Finger Driven by PZT)

  • 류재춘;박종국
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 추계학술대회 학술발표 논문집
    • /
    • pp.568-576
    • /
    • 1998
  • In this thesis discuss with a flexible robotic finger design and controller which is used for the micro flexible robotic finger. So, miniaturization, precision, controller for the control of grasping force and actuator were needed. And, even if we develop a new actuator and controller, in order to use on real system, we must considerate of a many side problem. In a force control of micro flexible finger for grasping an object, the fingertip's vibration was more important task of accuracy control. And, controller were adopt the PD/PI mixed type fuzzy controller. The controller were consist of two part, one is a PD type fuzzy controller for increase the rising time response, the other is a PI type fuzzy controller for decrease of steady-state error. Especially, in a PD type fuzzy controller, we used only seven rules. And, for a PI controller, we adopt a reset factor for the control of input values. so, we have overcome the exceed of controller's input range. For the estimate of ontroller's utility and usefulness, we have experiment and computer simulation of three cases. First, we consider of unit force grasping control for a task object, which is 0.03N. Second, bounding grasping force control which is add to a sinusoidal force on the unit force. At this cases the task force is (0.03+0.01 sin wt N). And consider of following of rectangular forces.

  • PDF

Research on Fuzzy I-PD Optimal Preview Control

  • Wang, Dong;Aida, Kazuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.483-483
    • /
    • 2000
  • The Fuzzy Preview Control (FPC) design methodology using I-PD Preview Control (IPC) and Optimal Preview Control (OPC)[6] are discussed in this paper. First we show a new fuzzy controller with single input single output, and build a relationship between it and the I-PD Control proposed by Kitamari, as well as Optimal Control with some specific equations. We also give the stability analysis with Lyapunov theorem. On this way, we can design a Fuzzy I-PD Controller (FIC) very easier and more effective. Then, preview control element design methodology of FCP was given according to IPC and OPC. Third, to make the system more rapidly and more little overshooting, two factors are given to adjust the controller's properties. At last, the performance of FPC is revealed via computer simulation using a nonlinear plant.

  • PDF

룩업 테이블을 이용한 자동 학습 퍼지 제어기의 설계에 관한 연구 (Design of a Self-Organizing Fuzzy Controller Using the Look-Up Tables)

  • 이용노;김태원;서일홍
    • 전자공학회논문지B
    • /
    • 제29B권9호
    • /
    • pp.76-87
    • /
    • 1992
  • A novel self-organizing fuzzy plus PD control algorithm is proposed, where the proposed controller consists of a typical fuzzy reasoning part and self organizing part in which both on-line and off-line algorithms are employed to modify the Look-Up Table(LUT) for the fuzzy control rules and to decide how much fuzzy rules are to be modifid after evaluating the control performance, respectively. And the fuzzy controller is replaced by a PD controller in a prespecified region nearby the set point for good settling actions, where gain parameters are determined by fuzzy rules based on the magnitude of error velocity at the instant when the output penetrates into the prespecified region. To show the effectiveness of the proposed controller, extensive computer simulation results as well as experimental results are illustrated for an inverted pendulum system.

  • PDF

퍼지PID제어를 이용한 추종 제어기 설계 (Fuzzy PID Controller Design for Tracking Control)

  • 김봉주;정정주
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.68-68
    • /
    • 2000
  • This paper presents a fuzzy modified PID controller that uses linear fuzzy inference method. In this structure, the proportional and derivative gains vary with the output of the system under control. 2-input PD type fuzzy controller is designed to obtain the varying gains. The proposed fuzzy PID structure maintains the same performance as the general-purpose linear PID controller, and enhances the tracking performance over a wide range of input. Numerical simulations and experimental results show the effectiveness of the fuzzy PID controller in comparison with the conventional PID controller.

  • PDF

FUZZY CONTROL OF THREE LINKS A ROBOTIC MANIPULATOR

  • Kumbla, Kishan;Jamshidi, Mo
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.1410-1413
    • /
    • 1993
  • This paper presents the application of fuzzy control to three links of a Rhino robot and compares its performance to traditional PD control. The dynamics of motion of robot links are governed by nonlinear differential equations. The fuzzy controller, being an adaptive technique, gives better performance than the traditional linear PD controller over a typical operational range. The fuzzy controller reaches the desired position with no overshoot, which is unlikely with the PD controller.

  • PDF