• Title/Summary/Keyword: PD-1 inhibitor

Search Result 159, Processing Time 0.028 seconds

The Optimal Tumor Mutational Burden Cutoff Value as a Novel Marker for Predicting the Efficacy of Programmed Cell Death-1 Checkpoint Inhibitors in Advanced Gastric Cancer

  • Jae Yeon Jang;Youngkyung Jeon ;Sun Young Jeong ;Sung Hee Lim ;Won Ki Kang;Jeeyun Lee ;Seung Tae Kim
    • Journal of Gastric Cancer
    • /
    • v.23 no.3
    • /
    • pp.476-486
    • /
    • 2023
  • Purpose: The optimal tumor mutational burden (TMB) value for predicting treatment response to programmed cell death-1 (PD-1) checkpoint inhibitors in advanced gastric cancer (AGC) remains unclear. We aimed to investigate the optimal TMB cutoff value that could predict the efficacy of PD-1 checkpoint inhibitors in AGC. Materials and Methods: Patients with AGC who received pembrolizumab or nivolumab between October 1, 2020, and July 27, 2021, at Samsung Medical Center in Korea were retrospectively analyzed. The TMB levels were measured using a next-generation sequencing assay. Based on receiver operating characteristic curve analysis, the TMB cutoff value was determined. Results: A total 53 patients were analyzed. The TMB cutoff value for predicting the overall response rate (ORR) to PD-1 checkpoint inhibitors was defined as 13.31 mutations per megabase (mt/Mb) with 56% sensitivity and 95% specificity. Based on this definition, 7 (13.2%) patients were TMB-high (TMB-H). The ORR differed between the TMB-low (TMB-L) and TMB-H (8.7% vs. 71.4%, P=0.001). The progression-free survival and overall survival (OS) for 53 patients were 1.93 (95% confidence interval [CI], 1.600-2.268) and 4.26 months (95% CI, 2.992-5.532). The median OS was longer in the TMB-H (20.8 months; 95% CI, 2.292-39.281) than in the TMB-L (3.31 months; 95% CI, 1.604-5.019; P=0.049). Conclusions: The TMB cutoff value for predicting treatment response in AGC patients who received PD-1 checkpoint inhibitor monotherapy as salvage treatment was 13.31 mt/Mb. When applying the programmed death ligand-1 status to TMB-H, patients who would benefit from PD-1 checkpoint inhibitors can be selected.

Correlation of PD-L1 Expression Tested by 22C3 and SP263 in Non-Small Cell Lung Cancer and Its Prognostic Effect on EGFR Mutation-Positive Lung Adenocarcinoma

  • Kim, Taehee;Cha, Yoon Jin;Chang, Yoon Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.83 no.1
    • /
    • pp.51-60
    • /
    • 2020
  • Background: Programmed death-ligand 1 (PD-L1) expression is tested by immunohistochemistry (IHC)-22C3, SP263, and SP142. The aim of this study is to evaluate the correlation among the three methods of PD-L1 IHC in non-small cell lung cancer (NSCLC) and clinical significance of PD-L1 expression in lung adenocarcinoma with an epidermal growth factor receptor (EGFR)-tyrosine kinase domain mutation. Methods: The results of 230 patients who were pathologically confirmed as having NSCLC; tested using PD-L1 IHC 22C3, SP263, and SP142 methods; and evaluated via the peptide nucleic acid clamping method to confirm EGFR mutation, were analyzed in this study. Results: 164 patients underwent both the SP263 and 22C3 tests. There was a significant positive correlation between the outcomes of the two tests (Spearman correlation coefficient=0.912, p<0.001), with a derived regression equation as follows: 22C3=15.2+0.884×SP263 (R2=0.792, p<0.001). There was no relationship between the expression of PD-L1 and clinical parameters, including EGFR-tyrosine kinase inhibitor (TKI) mutation. The PD-L1 expression in patients treated with EGFR-TKI yielded a 2-month-shorter progression period than that in the PD-L1-negative group. However, this did not reach statistical significance (PD-L1<1% vs. PD-L1≥1%, 10 months vs. 8 months). Conclusion: The results of the 22C3 and those of SP263 methods were in good correlation with one another. Since the PD-L1 expression is not influenced by the EGFR mutation, it is necessary to perform a PD-L1 test to set the treatment direction in the patients with EGFR-mutant NSCLC.

Sinapic Acid Ameliorates REV-ERB α Modulated Mitochondrial Fission against MPTP-Induced Parkinson's Disease Model

  • Lee, Sang-Bin;Yang, Hyun Ok
    • Biomolecules & Therapeutics
    • /
    • v.30 no.5
    • /
    • pp.409-417
    • /
    • 2022
  • Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide, and accumulating evidence indicates that mitochondrial dysfunction is associated with progressive deterioration in PD patients. Previous studies have shown that sinapic acid has a neuroprotective effect, but its mechanisms of action remain unclear. The neuroprotective effect of sinapic acid was assayed in a PD mouse model generated by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) as well as in SH-SY5Y cells. Target protein expression was detected by western blotting. Sinapic acid treatment attenuated the behavioral defects and loss of dopaminergic neurons in the PD models. Sinapic acid also improved mitochondrial function in the PD models. MPTP treatment increased the abundance of mitochondrial fission proteins such as dynamin-related protein 1 (Drp1) and phospho-Drp1 Ser616. In addition, MPTP decreased the expression of the REV-ERB α protein. These changes were attenuated by sinapic acid treatment. We used the pharmacological REV-ERB α inhibitor SR8278 to confirmation of protective effect of sinapic acid. Treatment of SR8278 with sinapic acid reversed the protein expression of phospho-Drp1 Ser616 and REV-ERB α on MPTP-treated mice. Our findings demonstrated that sinapic acid protects against MPTP-induced PD and these effects might be related to the inhibiting abnormal mitochondrial fission through REV-ERB α.

Ceramide Induces Cell Death through an ERK-dependent Mitochondrial Apoptotic Pathway in Renal Epithelial Cells

  • Jung, Soon-Hee
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.42 no.1
    • /
    • pp.46-54
    • /
    • 2010
  • Ceramide induces cell death in a variety of cell types however, the underlying molecular mechanisms related to renal epithelial cells remain unclear. The present study was undertaken to determine the role of extracellular signal-regulated protein kinase (ERK) in ceramide-induced cell death in renal epithelial cells. An established renal proximal tubular cell line of opossum kidney (OK) cells was used for this research. Ceramide induced apoptotic cell death in these cells. Western blot analysis showed that ceramide induced activation of ERK. The ERK activation and cell death induced by ceramide were prevented by the ERK inhibitor PD98059. Ceramide caused cytochrome C release from mitochondria into the cytosol as well as activation of caspase-3. Both effects were prevented by PD98059. The ceramide-induced cell death was also prevented by a caspase inhibitor. These results suggest that ceramide induces cell death through an ERK-dependent mitochondrial apoptotic pathway in OK cells.

  • PDF

Oxytocin-induced endothelial nitric oxide dependent vasorelaxation and ERK1/2-mediated vasoconstriction in the rat aorta

  • Xu, Qian;Zhuo, Kunping;Zhang, Xiaotian;Zhang, Yaoxia;Xue, Jiaojiao;Zhou, Ming-Sheng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.4
    • /
    • pp.255-262
    • /
    • 2022
  • Oxytocin is a neuropeptide produced primarily in the hypothalamus and plays an important role in the regulation of mammalian birth and lactation. It has been shown that oxytocin has important cardiovascular protective effects. Here we investigated the effects of oxytocin on vascular reactivity and underlying the mechanisms in human umbilical vein endothelial cells (HUVECs) in vitro and in rat aorta ex vivo. Oxytocin increased phospho-eNOS (Ser 1177) and phospho-Akt (Ser 473) expression in HUVECs in vitro and the aorta of rat ex vivo. Wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase (PI3K), inhibited oxytocin-induced Akt and eNOS phosphorylation. In the rat aortic rings, oxytocin induced a biphasic vascular reactivity: oxytocin at low dose (10-9-10-8 M) initiated a vasorelaxation followed by a vasoconstriction at high dose (10-7 M). L-NAME (a nitric oxide synthase inhibitor), endothelium removal or wortmannin abolished oxytocin-induced vasorelaxation, and slightly enhanced oxytocin-induced vasoconstriction. Atosiban, an oxytocin/vasopressin 1a receptor inhibitor, totally blocked oxytocin-induced relaxation and vasoconstriction. PD98059 (ERK1/2 inhibitor) partially inhibited oxytocin-induced vasoconstriction. Oxytocin also increased aortic phospho-ERK1/2 expression, which was reduced by either atosiban or PD98059, suggesting that oxytocin-induced vasoconstriction was partially mediated by oxytocin/V1aR activation of ERK1/2. The present study demonstrates that oxytocin can activate different signaling pathways to cause vasorelaxation or vasoconstriction. Oxytocin stimulation of PI3K/eNOS-derived nitric oxide may participate in maintenance of cardiovascular homeostasis, and different vascular reactivities to low or high dose of oxytocin suggest that oxytocin may have different regulatory effects on vascular tone under physiological or pathophysiological conditions.

MAPK Signal Pathways in Regulation of Odontoblastic Differentiation by Induction of HO-1 in Human Dental Pulp Cells (MAPK 경로를 통한 HO-1과 분화 표지자 발현)

  • Kim, Sun-Ju
    • Journal of dental hygiene science
    • /
    • v.10 no.4
    • /
    • pp.227-231
    • /
    • 2010
  • The purpose of this study was to examine the MAPK signaling pathways involved in regulation of HO-1 and the odontoblast differentiation markers during the odontoblastic differentiation for HDPCs. We evaluated cell growth by MTT assay and differentiation marker mRNA expression by RT-PCR. When the cells were treated with p38 inhibitor (SB203580, $10{\mu}M$), JNK inhibitor (SP600125, $10{\mu}M$), and ERK inhibitor (PD98059, $20{\mu}M$) for 7 days, cell growth and expression of HO-1 and differentiation makers were significantly decreased in HDPCs. Our results suggest that odontoblastic differentiation is positively regulated by HO-1 induction in HDPCs via ERK, JNK, and p38 signaling pathways. Thus, pharmacological HO-1 induction might represent a potent therapeutic approach for pulp capping and the regeneration of HDPCs.

Delayed periocular dermatitis as a rare side-effect of topical anti-glaucoma eyedrop instillation in two Shih-Tzu dogs with atopic dermatitis

  • Jaeho Shim;Su An Kim;Kangmoon Seo;Seonmi Kang
    • Journal of Veterinary Science
    • /
    • v.24 no.1
    • /
    • pp.6.1-6.6
    • /
    • 2023
  • Two Shih-Tzu dogs with atopic dermatitis presented with delayed periocular dermatitis (PD) following the instillation of dorzolamide and dorzolamide/timolol combination eyedrops; the development of dermatologic signs took 94 and 104 d in cases 1 and 2, respectively. Hypersensitivity to anti-glaucoma eyedrops was highly suspected, and treatment was discontinued. Delayed PD was significantly relieved in cases 1 and 2, at days 155 and 64 after discontinuation, respectively. In this study, the clinical characteristics and progression of delayed PD were described to inform clinicians who may encounter this rare side effect.

Pharmacokinetic and Pharmacodynamic Modeling of a Proton Pump Inhibitor

  • Bae, Kyun-Seop;Jang, In-Jin
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.223-224
    • /
    • 2002
  • Pharmacokinetic (PK) and pharmacodynamic (PD) study of a new reversible proton pump inhibitor (YH1885, Yuhan Pharmaceutical Co.) was done as a phase 1 clinical trial in Seoul national University Hospital Clinical trialcenter. Single dose of 60, 100, 150, 200, and 300mg were administered to total 20 healthy subjects under fasting state. Six subjects were given 100 mg after food and 12 subjects were given multiple doses of 150 and 300 mg every day for 7 days under fasting state. (omitted)

  • PDF

Activation of C/EBP$\beta$ by PD98059 leads to the induction of GSTA2

  • Park, E-Y;Kang, K-W;Kim, S-G
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.05a
    • /
    • pp.72-72
    • /
    • 2003
  • Induction of glutathione S-transferases is associated with cancer chemoprevention. We reported that PD98059, an MKK1 inhibitor, induces glutathione Stransferase A2 (rGSTA2). This report comparatively examines the role of CCAAT/enhancer binding protein (C/EBP) and Nrf-2 in the induction of rGSTA2 by PD98059. PD98059 at the concentrations effective for the inhibition of MKKI increased the rGSTA2 protein and mRNA levels in H4IIE cells. (omitted)

  • PDF