• Title/Summary/Keyword: PCV 밸브

Search Result 20, Processing Time 0.021 seconds

A Study on Development of Design Program for PCV Valve (PCV 밸브의 설계 프로그램 개발에 관한 연구)

  • Lee, Jong-Hoon;Islam, Md. Tajul;Lee, Yeon-Won;Kim, Young-Duk
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.228-232
    • /
    • 2005
  • Automobiles are very important as modern society is developed. Increase of the number of the automobiles cause environmental problem, that is, air pollution. So, many countries are adopting a environmental law. Automobile manufacturing companies have developing methods to prevent air pollution with increase of the efficiency of automotive engines. PCV(Positive Crankcase Ventilation) system which is one of them is made by the closed loop that consists of combustion chamber, crankcase, manifold suction tube and manifold. PCV valve is attached on manifold tube to control the flowrate of blowby gas. PCV valve is an important part in this system but it is difficult to design PCV valve which satisfies the required flowrate of blowby gas. In this study, our purpose is to help a PCV valve designer with the development of a design program. We used 4th order Runge-Kutta method and Bernoulli's equation to analyze the spool dynamic motion. By the comparison between our program and experiment, we think that a PCV designer can use our program in their work place.

  • PDF

A STUDY ON INTERNAL FLOW CHARACTERISTICS OF PCV VALVE ACCORDING TO SPOOL DYNAMIC BEHAVIOR (PCV 밸브의 스풀 동적거동에 따른 내부유동 특성에 관한 연구)

  • Lee J.H.;Lee Y.W.;Kim J.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.223-227
    • /
    • 2005
  • A PCV valve is a part to control the flow rate of Blowby gas in a PCV system. A PCV system re-burns Blowby gas with fuel in a combustion chamber. Some gas enters to a crankcase room through the gap between piston ring and engine cylinder wall. This gas si called 'Blowby gas'. This gas causes many problems. In environmental view, Blowby gas includes about $25\~35\%$ hydrocarbon{HC) of total generated HC in an automobile. Hydrocarbon is a very harmful pollutant element in our life. In mechanical view, Blowby gas has some reaction with lubricant oil of crankcase room. Then, this causes lubricant oil contamination, crankcase corrosion and a decrease fo engine efficiency. Consequently, Blowby gas must be eliminated from a crankcase room. In this study, we simulated internal flow characteristics in a PCV valve according to spool dynamic behavior using local remeshing method And, we programmed our sub routine to simulate a spool dynamic motion. As results, spool dynamic behavior is periodically oscillated by the relationship between fluid force and elastic force of spring. And its magnitude is linearly increased by the differential pressure between inlet and outlet. Also, as spool is largely moved, flow area is suddenly decreased at orifice. For this reason, flow velocity is rapidly decreased by viscous effect.

  • PDF

Computational Analysis of Flow Characteristics of a PCV Valve (PCV(Positive Crankcase Ventilation) 밸브의 유동특성에 관한 수치해석)

  • Lee Jong Hoon;Choi Yoon Hwan;Lee Yeon Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.66-73
    • /
    • 2005
  • A great deal of exhaust gas inside a combustion room goes out through exhaust pipe. But residual gas 'Blowby gas' enters the crankcase through a small gap between the piston and the cylinder wall. Here, if the blowby gas isn't vented, this causes many bad efffcts such as lubricant oil contamination, corrosion by that and crankcase explosion by rising pressure. So most automobiles are constituted with a PCV(Positive Crankcase Ventilation) system to prevent previous problems. PCV valve is the most important part in this ventilation system. When companies are manufacturing new cases, engineers are designing it depending on their experiments than theoretical knowledges. Much efforts and times are needed for new development. This study will show quantitative results to increase the possibilities for the optimal design.

Pressure control of hydraulic servo system using proportional control valve (비례전자밸브를 사용한 유압서보계의 압력제어)

  • Yang, Kyong-Uk;Oh, In-Ho;Lee, Ill-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.8
    • /
    • pp.1229-1240
    • /
    • 1997
  • The purpose of this study is to build up control scheme that promptly control pressure in a hydraulic cylinder having comparatively small control volume, using a PCV (proportional control valve) and a digital computer. Object pressure control system has the character to be unstable easily, because the displacement-flow gain of the PCV is too large considering the small volume of the hydraulic cylinder and the time delay of response of the PCV is comparatively long. Considering the above-mentioned characteristics of the object pressure control system, in this study, control system is designed with two degree of freedom control scheme that is composed by adding a feed-forward control path to I-PDD$^{2}$ control system, and a reference model is used on the decision of control parameters. And through some experiments on the control system with FF-I-PDD$^{2}$ controller, the validity of this control method has been confirmed.

Pressure Control of Electro-Hydraulic Servo System by Two-Degree of Freedom Control Scheme (2자유도 제어기법에 의한 전자 유압 서보계의 압력제어)

  • 양경욱;오인호;이일영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.3
    • /
    • pp.110-120
    • /
    • 1996
  • The purpose of this study is to build up the control scheme that promptly controls the pressure in a hydraulic cylinder having small control volume, using a PCV(proportional control valve) and a digital computer. Object pressure control system has the character to be unstable easily, because the displacement-flow gain of the PCV is so large considering comparatively small volume of the hydraulic cylinder and the time delay of response of PCV is long. Considering the above-mentioned characteristics of the object pressure control system, in this study, a control system is designed with two degree of freedom scheme that is composed by adding a feed-forward control path to I-PD control system, and the reference model is used to decide control parameters. And through some experiments on FF-I-PD, the validity of this control method is confirmed.

  • PDF

Characteristics of the Proportional Pressure Control Valve for 4 Wheel Steering System on the Passenger Car (승용차 4륜 조향(4WS) 장치용 비례 압력 제어 밸브의 특성에 관한 연구)

  • 오인호;장지성;이일영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.4
    • /
    • pp.87-96
    • /
    • 1996
  • The proportional pressure control valve(PCV) is an essential component in the open loop controlled rear wheel steering gear of the four wheel steering(4WS) system on the passenger car. The valve should have versatile functions and higher performance. But, it is hard to find the proportional pressure control valve suitable for the 4WS system. In this paper, the determination of the valve parameters was studied by the stability discrimination and the characteristic analysis for the purpose of the development of a new PCV for the 4WS. The mathematical model of the valve was derived from the valve-cylinder system and the programme for numerical computation was developed. The transfer function of the system was obtained from the mathematical model. The characteristics of the valve were inspected through the experiment and compared to those obtained by numerical method. And then the stability discrimination of the system was done by root locus and the analysis of characteristics was done by the developed programme. From the experiment and the analysis of characteristics was done by the developed programme. From the experiment and the inspection, the appropriation of mathematical model and the usefulness of the programme were confirmed. And the parameters which might affect the performance of the valve can be determined by considering the stability discrimination, the characteristics analysis and required functions.

  • PDF

Design Parameter Analysis of the Proportional Control Valve for Wheel-Loader Automatic Transmission (휠로더 자동변속기용 비례 제어 밸브의 설계 특성 해석)

  • Park, Young-Jun;O, Joo-Young;Yun, Ung-Kwon;Lee, Guen-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.5
    • /
    • pp.27-35
    • /
    • 2010
  • A loader used for uploading materials into truck is a kind of construction equipment. Mainly, a wheel loader is applied to construction work. Recently, an automatic transmission for the wheel loader is used to help drivers get the repetitive works done comfortably. It is composed of geartrain, clutch pack, hydraulic control system and TCU. Especially, a high-performance proportional control valve and its control algorithm is demanded to achieve the shift quality during a change of speed. In this paper, the commercial package program was used in order to justify model of the proportional control valve and simulate it. Steady-state and dynamic characteristics of PCV were analyzed to classify attractive forces and hydraulic control characteristics. This model also was verified the validity compared to the experimental result. Using the developed model, performances of PCV were predicted as studying design parameters.

Characteristics of Liquid Rocket Engine Simulation System Using Control Valve (제어밸브를 이용한 액체로켓엔진 모사시스뎀 특성)

  • Lee Joons-Youp;Jung Tae-Kyu;Han Sang-Yeop;Kim Young-Mog
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.3
    • /
    • pp.74-84
    • /
    • 2005
  • This paper include the investigation of finding the system characteristics of facility by simulating open-type turbo-pump fed system, which has commercial control valves, using AMESIM (Advanced Modeling Environment Simulation) commercial software. After developing a flight-type control valve on the basis of the results, the system characteristics of facility for control and valve tests is estimated. Especially, one of purposes of this paper is to find PID value of each commercial control valve in the facility for system test. To find suitable control logic, PI and PID modes are also compared. This paper also introduces design parameters of valve and equipment for thrust control and TDS simulation, which are using control valves.

Start and Stop Characteristics of Single-Rod Electro-Hydrostatic Actuator (전동기 일체형 편로드 유압액추에이터의 기동 및 정지특성해석)

  • Jung, Gyu-Hong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1483-1490
    • /
    • 2011
  • Electro-hydrostatic actuators(EHAs), which are usually composed of a direct motor-driven hydraulic pump and a cylinder, have been widely adopted as aircraft actuation systems because of their benefits in terms of improved efficiency, weight savings and the fact that they use a standalone power source. Since the recent trend in construction vehicles has been focus on energy savings in their hydraulic systems, EHAs are expected to be potential substitutes for conventional power transmission, since they are capable of energy recovery as well as highly efficient pump control. In this paper, the start and stop characteristics of EHAs were investigated through cracking pressure analysis of the pilot-operated check valve(PCV), which enables the cylinder to standstill against an external load with no holding effort from the hydraulic pump. A mathematical model that includes the load dynamics and the EHA's internal hydraulic circuit was derived for simulation with the MATLAB Simulink package. This model verified the PCV's opening and closing sequence, which in turn affects the EHA's start and stop characteristics.

Minimization of Shifting Shock of Tractor PST using SimulationX (SimulationX를 이용한 트랙터 PST 변속 충격 최소화 연구)

  • Eom, Tae Ho;Lee, Chul-Hee
    • Journal of Drive and Control
    • /
    • v.15 no.3
    • /
    • pp.36-42
    • /
    • 2018
  • Agricultural tractors require frequent shifting to improve operation efficiency, and PST (Powershift Transmission) is considered as a suitable transmission. However, due to the inherent characteristics of the PST, shocks arise during shifting, which imparts a negative effect on the operator. Therefore, in order to improve the transmission performance of the tractor PST, researches on various methods including the hydraulic system circuit, the engine input speed control, and the mechanical system of the transmission are steadily being conducted. In this study, in order to reduce the impact of PST on a shift based on SimulationX software, we analyzed the characteristics of the input signal of PCV (Pressure Control Valve) through sensitivity analysis and verified the simulation model through actual vehicle test. Optimization was performed for minimizing the shift shock for some of the parameters of the input signal at constant temperature and RPM conditions.