• 제목/요약/키워드: PCR with species-specific primer

검색결과 197건 처리시간 0.025초

A Duplex PCR Assay for Differentiating Native Common Buckwheat and Tartarian Buckwheat, and Its Application for the Rapid Detection of Buckwheat Ingredients in Food

  • Jeon, Young-Jun;Hong, Kwang-Won
    • Food Science and Biotechnology
    • /
    • 제17권2호
    • /
    • pp.357-361
    • /
    • 2008
  • One of the major allergenic proteins in common buckwheat (Fagopyrum elculentum) was found to be a BW10KD. In this work, allergenic BW10KD genomic DNAs from the native common buckwheat 'Pyeongchang' and Tartarian buckwheat 'Clfa47' were cloned by polymerase chain reaction (PCR), and their nucleotide sequences were determined. In addition, a novel PCR assay targeting the allergenic BW10KD gene was developed to detect and differentiate both buckwheat species in food. The nucleotide sequences of the BW10KD genomic DNA from 'Pyeongchang' and 'Clfa47' were 94% identical. Base differences in the nucleotide sequences of the BW10KD genes are probably useful as a molecular marker for species-specific identification. The 'Pyeongchang'-specific primer set 154PF/400PR and the 'Clfa47'-specific primer set 154DF/253DR generated 247 and 100 bp fragments in singleplex PCR, respectively. A duplex PCR assay with 2 species-specific primer sets simultaneously differentiated the 'Pyeongchang' and 'Clfa47' in a single reaction. The PCR assay also successfully allowed for the rapid detection of buckwheat ingredients in foods.

Detection of Escherichia coli O157:H7, Salmonella spp., Staphylococcus aureus and Listeria monocytogenes in Kimchi by Multiplex Polymerase Chain Reaction (mPCR)

  • Park, Yeon-Sun;Lee, Sang-Rok;Kim, Young-Gon
    • Journal of Microbiology
    • /
    • 제44권1호
    • /
    • pp.92-97
    • /
    • 2006
  • We developed an mPCR assay for the simultaneous detection, in one tube, of Escherichia coli O157:H7, Salmonella spp., Staphylococcus aureus and Listeria monocytogenes using species-specific primers. The mPCR employed the E. coli O157:H7 specific primer Stx2A, Salmonella spp. specific primer Its, S. aureus specific primer Cap8A-B and L. monocytogenes specific primer Hly. Amplification with these primers produced products of 553, 312, 405 and 210 bp, respectively. All PCR products were easily detected by agarose gel electrophoresis, and the sequences of the specific amplicons assessed. Potential pathogenic bacteria, in laboratory-prepared and four commercially available kimchi products, were using this mPCR assay, and the amplicons cloned and sequenced. The results correlated exactly with sequences derived for amplicons obtained during preliminry tests with known organisms. The sensitivity of the assay was determined for the purified pathogen DNAs from four strains. The mPCR detected pathogen DNA at concentrations ranging from approximately 0.45 to $0.05\;pM/{\mu}l$. Thus, this mPCR assay may allow for the rapid, reliable and cost-effective identification of four potentially pathogens present in the mixed bacterial communities of commercially available kimchi.

Sensitive, Accurate PCR Assays for Detecting Harmful Dinoflagellate Cochlodinium polykrikoides Using a Specific Oligonucleotide Primer Set

  • Kim Chang-Hoon;Park Gi-Hong;Kim Keun-Yong
    • Fisheries and Aquatic Sciences
    • /
    • 제7권3호
    • /
    • pp.122-129
    • /
    • 2004
  • Harmful Cochlodinium polykrikoides is a notorious harmful algal bloom (HAB) species that is causing mass mortality of farmed fish along the Korean coast with increasing frequency. We analyzed the sequence of the large subunit (LSD) rDNA D1-D3 region of C. polykrikoides and conducted phylogenetic analyses using Bayesian inference of phylogeny and the maximum likelihood method. The molecular phylogeny showed that C. polykrikoides had the genetic relationship to Amphidinium and Gymnodinium species supported only by the relatively high posterior probabilities of Bayesian inference. Based on the LSU rDNA sequence data of diverse dinoflagellate taxa, we designed the C. polykrikoides-specific PCR primer set, CPOLY01 and CPOLY02 and developed PCR detection assays for its sensitive, accurate HAB monitoring. CPOLY01 and CPOLY02 specifically amplified C. polykrikoides and did not cross-react with any dinoflagellates tested in this study or environmental water samples. The effective annealing temperature $(T_{p})$ of CPOLY01 and CPOLY02 was $67^{\circ}C$. At this temperature, the conventional and nested PCR assays were sensitive over a wide range of C. polykrikoides cell numbers with detection limits of 0.05 and 0.0001 cells/reaction, respectively.

PCR Based Detection of Phellinus linteus using Specific Primers Generated from Universal Rice Primer(URP) Derived PCR Polymorphic Band

  • Kang, Hee-Wan;Park, Dong-Suk;Park, Young-Jin;Lee, Byoung-Moo;Cho, Soo-Muk;Kim, Ki-Tae;Seo, Geon-Sik;Go, Seung-Joo
    • Mycobiology
    • /
    • 제30권4호
    • /
    • pp.202-207
    • /
    • 2002
  • This study was carried out to develop specific primers for PCR detection of Phellinus linteus. Diverse genomes of 15 Phellinus spp. including five Phellinus linteus isolates were fingerprinted by Primer Universal rice primer(URP)1F. The URP-PCR pattern differentiated P. linteus isolates from other phellinus spp. A polymorphic band(2.8 kb), which is unique for P. linteus isolates, was isolated and sequenced. Twenty four-oligonucleotide primer pairs were designed based on information of DNA sequence. The primer set(PLSPF2/PLSPR1) amplified single band(2.2 kb) of expected size with genomic DNA from seven Phellinus linteus, but not with that of other Phellinus species tested. The primers could be used identically in both DNA samples from mycelium and fruit bodies. This specific primers could offer a useful tool for detecting and identifying P. linteus rapidly.

Reevaluation of the Change of Leuconostoc Species and Lactobacillus plantarum by PCR During Kimchi Fermentation

  • Choi, Jae-Yeon;Kim, Min-Kyun;Lee, Jong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권1호
    • /
    • pp.166-171
    • /
    • 2002
  • The genus Leuconostoc is generally recognized as a favorable microorganism associated with a good taste of Kimchi and Lactobacillus plantarum is responsible for the overripening and acidification of Kimchi. A rapid and reliable PCR-based method to monitor the change of these lactic acid bacterial populations during Kimchi fermentation was attempted. A Leuconostoc-specific primer set was chosen from the conserved sequences of 16S rRNA genes among Leuconostoc species. The Lb. plantarum-specific primer set was the internal segments of a Lb. plantarum-specific probe which was isolated after randomly amplified polymorphic DNA (RAPD) analysis and tested for identification. The specificity of this protocol was examined in DNA samples isolated from a single strain. In agarose gel, as little as 10 pg of template DNA could be used to visualize the PCR products, and quantitative determination was possible at the levels of 10 pg to 100 ng template DNA. For the semi-quantitative determination of microbial changes during Kimchi fermentation, total DNAs from the 2 h-cultured microflora of Kimchi were extracted for 16 days and equal amounts of DNA templates were used for PCR. The intensities of DNA bands obtained from PCR using Leuconostoc-specific and Lb. plantarum-specific primer sets marked a dramatic contrast at the 1 ng and 100 ng template DNA levels during Kimchi fermentation, respectively. As the fermentation proceeded, the intensity of the band for Leuconostoc species increased sharply until the 5th day and the levels was maintained until the 11 th day. The sharp increase for Lb. plantarum occurred after 11 days with the decrease of Leuconostoc species. The results of this study indicate that Leuconostoc species were the major microorganisms at the beginning of Kimchi fermentation and reach their highest population during the optimum ripening period of Kimchi.

Genetic Distances of Three Mollusk Species Investigated by PCR Analysis

  • Oh, Hyun;Yoon, Jong-Man
    • 한국발생생물학회지:발생과생식
    • /
    • 제18권1호
    • /
    • pp.43-49
    • /
    • 2014
  • Three species of Nortamea concinua (NC) and Haliotis discus hannai (HDH) from Tongyeong and Sulculus diversicolor supertexta (SDS) are widely distributed on the coast of the Yellow Sea, southern sea and Jeju Island in the Korean Peninsula under the innate ecosystem. There is a need to understand the genetic traits and composition of three mollusk species in order to evaluate exactly the patent genetic effect. PCR analysis was performed on DNA samples extracted from a total of 21 individuals using seven decamer oligonucleotides primers. Seven primers were shown to generate the unique shared loci to each species and shared loci by the three species which could be clearly scored. A hierarchical clustering tree was constructed using similarity matrices to generate a dendrogram, which was facilitated by the Systat version 10. 236 specific loci, with an average of 56.3 per primer, were identified in the NC species. 142 specific loci, with an average of 44.7 per primer, were identified in the HDH species. Especially, 126 numbers of shared loci by the three species, with an average of 18 per primer, were observed among the three species. Especially, the decamer primer BION-75 generated 7 unique loci to each species, which were identifying each species, in 700 bp NC species. Interestingly, the primer BION-50detected 42 shared loci by the three species, major and/or minor fragments of sizes 100 bp and 150 bp, respectively, which were identical in all samples. As regards average bandsharing value (BS) results, individuals from HDH species (0.772) exhibited higher bandsharing values than did individuals from NC species (0.655). In this study, the dendrogram obtained by the seven decamer primers indicates three genetic clusters: cluster 1 (CONCINNA 01~CONCINNA 07), cluster 2 (HANNAI 08~HANNAI 14), cluster 3 (SUPERTEXTA 15~SUPERTEXTA 21). Comparatively, individuals of HDH species were fairly closely related to that of SDS species, as shown in the hierarchical dendrogram of genetic distances.

Identification of Heterodera glycines (Tylenchida; Heteroderidae) Using qPCR

  • Ko, Hyoung-Rai;Kang, Heonil;Park, Eun-Hyoung;Kim, Eun-Hwa;Lee, Jae-Kook
    • The Plant Pathology Journal
    • /
    • 제35권6호
    • /
    • pp.654-661
    • /
    • 2019
  • The soybean cyst nematode, Heterodera glycines, is a major plant-parasitic nematode that has caused important economic losses to Korea's soybean production. Four species of cyst nematodes, H. schachtii, H. glycines, H. trifolii, and H. sojae, all belong to schachtii group are coexist in field soil in Korea. The rapid identification of the nematode is crucial for preventing crop damage and in decision making for controlling this nematode. This study aimed to develop a species-specific primer set for quantitative PCR (qPCR) assay of H. glycines. The specific primer set (HGF1 and HGR1) for H. glycines was designed based on the cytochrome c oxidase subunit I (COI) sequence of mitochondrial DNA. After optimization, it is possible to identify the H. glycines using a qPCR assay with DNA extracted from a single cyst and single second-stage juvenile (J2). The specificity was confirmed by the absence of SYBR fluorescent signals of three other Heterodera species. A serial dilution of DNA extracted from a single cyst was obtained for the sensitivity test. The result showed that the standard curve of the test had a highly significant linearity between DNA concentration and Ct value (R2 = 0.996, slope = -3.49) and that the detection limit concentration of DNA of the primer set was 10 pg of DNA per reaction. Our findings suggested that H. glycines could be distinguished from H. sojae and other Heterodera species when a qPCR assay is used with a specific primer set.

종 특이 primer를 이용한 옥수수 오염 Fusarium verticillioides의 PCR 검출 (Detection of Fusarium verticillioides Contaminated in Corn Using a New Species-specific Primer)

  • 강미란;김지혜;이승호;류재기;이데레사;윤성환
    • 식물병연구
    • /
    • 제17권3호
    • /
    • pp.369-375
    • /
    • 2011
  • Fusarium verticillioides(완전세대: Gibberella moniliformis)는 Gibberellea fujikuroi 종 복합체에 속하는 식물병원균으로서 옥수수의 줄기와 이삭에 썩음병을 일으킬 뿐 아니라 인축에 중독증을 일으키는 fumonisin 곰팡이 독소를 생산한다. 본 연구의 목적은 옥수수에 주로 발생하는 fumonisin 생성가능 G. fujikuori 종 복합체 소속 Fusarium 곰팡이 중 F. verticillioides와 그 외 F. proliferatum, F. fujikuori 등을 서로 구별할 수 있는 종 특이적 PCR primer 조합을 개발하는 것이다. RNA polymerase II beta subunit 유전자(RPB2)의 염기서열로부터 제작된 특이 primer 조합(RVERT1와 RVERT2)은 우리나라 옥수수에서 분리한 잠재적인 fumonisin 생성 G. fujikuori 종 복합체 균주 중 오직 F. verticillioides로부터 208 bp 크기의 단일 DNA 절편을 증폭하였다. 한편 F. verticillioides를 포함한 모든 조사균주는 fumonisin 생합성에 필수적인 FUM1 유전자를 포함하고 있었다. 개발된 특이 primer 조합의 검출한계는 분석 곰팡이 DNA 0.125 pg/${\mu}l$ 수준이었다. 한편, 같은 primer 조합으로 Fusarium spp.에 오염된 옥수수 시료의 게놈 DNA로부터 F. verticillioides 특이 DNA 절편이 증폭되었다. 이와 같은 결과를 종합할 때, 본 연구에서 개발된 primer 조합은 여러 곡물 시료에 오염되어 있는 F. verticillioides 균주의 검출과 종 동정에 유용하게 사용될 것이다.

A New Approach Using the SYBR Green-Based Real-Time PCR Method for Detection of Soft Rot Pectobacterium odoriferum Associated with Kimchi Cabbage

  • Yong Ju, Jin;Dawon, Jo;Soon-Wo, Kwon;Samnyu, Jee;Jeong-Seon, Kim;Jegadeesh, Raman;Soo-Jin, Kim
    • The Plant Pathology Journal
    • /
    • 제38권6호
    • /
    • pp.656-664
    • /
    • 2022
  • Pectobacterium odoriferum is the primary causative agent in Kimchi cabbage soft-rot diseases. The pathogenic bacteria Pectobacterium genera are responsible for significant yield losses in crops. However, P. odoriferum shares a vast range of hosts with P. carotovorum, P. versatile, and P. brasiliense, and has similar biochemical, phenotypic, and genetic characteristics to these species. Therefore, it is essential to develop a P. odoriferumspecific diagnostic method for soft-rot disease because of the complicated diagnostic process and management as described above. Therefore, in this study, to select P. odoriferum-specific genes, species-specific genes were selected using the data of the P. odoriferum JK2.1 whole genome and similar bacterial species registered with NCBI. Thereafter, the specificity of the selected gene was tested through blast analysis. We identified novel species-specific genes to detect and quantify targeted P. odoriferum and designed specific primer sets targeting HAD family hydrolases. It was confirmed that the selected primer set formed a specific amplicon of 360 bp only in the DNA of P. odoriferum using 29 Pectobacterium species and related species. Furthermore, the population density of P. odoriferum can be estimated without genomic DNA extraction through SYBR Green-based real-time quantitative PCR using a primer set in plants. As a result, the newly developed diagnostic method enables rapid and accurate diagnosis and continuous monitoring of soft-rot disease in Kimchi cabbage without additional procedures from the plant tissue.

Development of Strain-Specific Primers for Identification of Bifidobacterium bifidum BGN4

  • Youn, So Youn;Ji, Geun Eog;Han, Yoo Ri;Park, Myeong Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권5호
    • /
    • pp.909-915
    • /
    • 2017
  • Bifidobacterium bifidum BGN4 (BGN4) has many proven beneficial effects, including antiallergy and anticancer properties. It has been commercialized and used in several probiotic products, and thus strain-specific identification of this strain is very valuable for further strain-dependent physiological study. For this purpose, we developed novel multiplex polymerase chain reaction (PCR) primer sets for strain-specific detection of BGN4 in commercial products and fecal samples of animal models. The primer set was tested on seven strains of B. bifidum and 75 strains of the other Bifidobacterium species. The BGN4-specific regions were derived using megaBLAST against genome sequences of various B. bifidum databases and four sets of primers were designed. As a result, only BGN4 produced four PCR products simultaneously whereas the other strains did not. The PCR detection limit using BGN4-specific primer sets was $2.8{\times}10^1CFU/ml$ of BGN4. Those primer sets also detected and identified BGN4 in the probiotic products containing BNG4 and fecal samples from a BGN4-fed animal model with high specificity. Our results indicate that the PCR assay from this study is an efficient tool for the simple, rapid, and reliable identification of BGN4, for which probiotic strains are known.