• Title/Summary/Keyword: PCR inhibitor

Search Result 393, Processing Time 0.032 seconds

Lipopolysaccharide Inhibits Proliferation of the Cultured Vascular Smooth Muscle Cells by Stimulating Inducible Nitric Oxide Synthase and Subsequent Activation of Guanylate Cyclase

  • Choi, Hyoung-Chul;Lee, Sang-Gon;Kim, Jong-Ho;Kim, Joo-Young;Sohn, Uy-Dong;Ha, Jeoung-Hee;Lee, Kwang-Youn;Kim, Won-Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.4
    • /
    • pp.343-351
    • /
    • 2001
  • This study was undertaken to investigate the mechanism of lipopolysaccharide (LPS) and nitric oxide (NO) as a regulator of vascular smooth muscle cell (VSMC) proliferation. VSMC was primarily cultured from rat aorta and confirmed by the immunocytochemistry with anti-smooth muscle myosin antibody. The number of viable VSMCs were counted, and lactate dehydrogenase (LDH) activity was measured to assess the degree of cell death. Concentrations of nitrite in the culture medium were measured as an indicator of NO production. LPS was introduced into the medium to induce the inducible nitric oxide synthase (iNOS) in VSMC, and Western blot for iNOS protein and RT-PCR for iNOS mRNA were performed to confirm the presence of iNOS. Inhibitors of iNOS and soluble guanylate cyclase (sGC), sodium nitroprusside (SNP) and L-arginine were employed to observe the action of LPS on the iNOS-NO-cGMP signalling pathway. LPS and SNP decreased number of VSMCs and increased the nitrite concentration in the culture medium, but there was no significant change in LDH activity. A cell permeable cGMP derivative, 8-Bromo-cGMP, decreased the number of VSMCs with no significant change in LDH activity. L-arginine, an NO substrate, alone tended to reduce cell count without affecting nitrite concentration or LDH level. Aminoguanidine, an iNOS specific inhibitor, inhibited LPS-induced reduction of cell numbers and reduced the nitrite concentration in the culture medium. LY 83583, a guanylate cyclase inhibitor, suppressed the inhibitory actions of LPS and SNP on VSMC proliferation. LPS increased amounts of iNOS protein and iNOS mRNA in a concentration-dependent manner. These results suggest that LPS inhibits the VSMC proliferation via production of NO by inducing iNOS gene expression. The cGMP which is produced by subsequent activation of guanylate cyclase would be a major mediator in the inhibitory action of iNOS-NO signalling on VSMC proliferation.

  • PDF

Pro-apoptotic Effect of Pifithrin-α on Preimplantation Porcine In vitro Fertilized Embryo Development

  • Mulligan, Brendan;Hwang, Jae-Yeon;Kim, Hyung-Min;Oh, Jong-Nam;Choi, Kwang-Hwan;Lee, Chang-Kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.12
    • /
    • pp.1681-1690
    • /
    • 2012
  • The aim of this study was to investigate the impact of a reported p53 inhibitor, pifithrin-${\alpha}$ (PFT-${\alpha}$), on preimplantation porcine in vitro fertilized (IVF) embryo development in culture. Treatment of PFT-${\alpha}$ was administered at both early (0 to 48 hpi), and later stages (48 to 168 hpi) of preimplantation development, and its impact upon the expression of five genes related to apoptosis (p53, bak, bcl-xL, p66Shc and caspase3), was assessed in resulting d 7 blastocysts, using real-time quantitative PCR. Total cell numbers, along with the number of apoptotic nuclei, as detected by the in situ cell death detection assay, were also calculated on d 7 in treated and non-treated control embryos. The results indicate that PFT-${\alpha}$, when administered at both early and later stages of porcine IVF embryo development, increases the incidence of apoptosis in resulting blastocysts. When administered at early cleavage stages, PFT-${\alpha}$ treatment was shown to reduce the developmental competence of porcine IVF embryos, as well as reducing the quality of resulting blastocysts in terms of overall cell numbers. In contrast, at later stages, PFT-${\alpha}$ administration resulted in marginally increased blastocyst development rates amongst treated embryos, but did not affect cell numbers. However, PFT-${\alpha}$ treatment induced apoptosis and apoptotic related gene expression, in all treated embryos, irrespective of the timing of treatment. Our results indicate that PFT-${\alpha}$ may severely compromise the developmental potential of porcine IVF embryos, and is a potent apoptotic agent when placed into porcine embryo culture media. Thus, caution should be exercised when using PFT-${\alpha}$ as a specific inhibitor of p53 mediated apoptosis, in the context of porcine IVF embryo culture systems.

Effects of hydrogen peroxide on voltage-dependent K+ currents in human cardiac fibroblasts through protein kinase pathways

  • Bae, Hyemi;Lee, Donghee;Kim, Young-Won;Choi, Jeongyoon;Lee, Hong Jun;Kim, Sang-Wook;Kim, Taeho;Noh, Yun-Hee;Ko, Jae-Hong;Bang, Hyoweon;Lim, Inja
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.3
    • /
    • pp.315-324
    • /
    • 2016
  • Human cardiac fibroblasts (HCFs) have various voltage-dependent $K^+$ channels (VDKCs) that can induce apoptosis. Hydrogen peroxide ($H_2O_2$) modulates VDKCs and induces oxidative stress, which is the main contributor to cardiac injury and cardiac remodeling. We investigated whether $H_2O_2$ could modulate VDKCs in HCFs and induce cell injury through this process. In whole-cell mode patch-clamp recordings, application of $H_2O_2$ stimulated $Ca^{2+}-activated$ $K^+$ ($K_{Ca}$) currents but not delayed rectifier $K^+$ or transient outward $K^+$ currents, all of which are VDKCs. $H_2O_2-stimulated$ $K_{Ca}$ currents were blocked by iberiotoxin (IbTX, a large conductance $K_{Ca}$ blocker). The $H_2O_2-stimulating$ effect on large-conductance $K_{Ca}$ ($BK_{Ca}$) currents was also blocked by KT5823 (a protein kinase G inhibitor) and 1 H-[1, 2, 4] oxadiazolo-[4, 3-a] quinoxalin-1-one (ODQ, a soluble guanylate cyclase inhibitor). In addition, 8-bromo-cyclic guanosine 3', 5'-monophosphate (8-Br-cGMP) stimulated $BK_{Ca}$ currents. In contrast, KT5720 and H-89 (protein kinase A inhibitors) did not block the $H_2O_2-stimulating$ effect on $BK_{Ca}$ currents. Using RT-PCR and western blot analysis, three subtypes of $K_{Ca}$ channels were detected in HCFs: $BK_{Ca}$ channels, small-conductance $K_{Ca}$ ($SK_{Ca}$) channels, and intermediate-conductance $K_{Ca}$ ($IK_{Ca}$) channels. In the annexin V/propidium iodide assay, apoptotic changes in HCFs increased in response to $H_2O_2$, but IbTX decreased $H_2O_2$-induced apoptosis. These data suggest that among the VDKCs of HCFs, $H_2O_2$ only enhances $BK_{Ca}$ currents through the protein kinase G pathway but not the protein kinase A pathway, and is involved in cell injury through $BK_{Ca}$ channels.

XIAP Associated Factor 1 (XAF1) Represses Expression of X-linked Inhibitor of Apoptosis Protein (XIAP) and Regulates Invasion, Cell Cycle, Apoptosis, and Cisplatin Sensitivity of Ovarian Carcinoma Cells

  • Zhao, Wen-Jing;Deng, Bo-Ya;Wang, Xue-Mei;Miao, Yuan;Wang, Jian-Nan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2453-2458
    • /
    • 2015
  • Background: X-linked inhibitor of apoptosis protein (XIAP) associated factor 1 (XAF1) exhibits aberrantly low or absent expression in various human malignancies, closely associated with anti-apoptosis and overgrowth of cancer cells. However, limited attention has been directed towards the contribution of XAF1 to invasion, apoptosis, and cisplatin (DDP)-resistance of epithelial ovarian cancer (EOC) cells. This study aimed to evaluate the potential effects of XAF1 on invasion, cell cycle, apoptosis, and cisplatin-resistance by overexpressing XAF1 in SKOV-3 and SKOV-3/DDP cells. Methods and Results: The pEGFP-C1-XAF1 plasmid was transfected into SKOV-3 and SKOV-3/DDP cells, and the expression of XAF1 at both mRNA and protein levels was analyzed by reverse transcription-PCR and Western blotting. Overexpression of XAF1 suppressed XIAP expression in both SKOV-3 and SKOV-3/DDP cells. Transwell invasion assays demonstrated that XAF1 exerted a strong anti-invasive effect in XAF1-overexpressing cells. Moreover, flow cytometry analysis revealed that XAF1 overexpression arrested the cell cycle at G0/G1 phase, and cell apoptosis analysis showed that overexpression of XAF1 enhanced apoptosis of SKOV-3 and SKOV-3/DDP cells apparently by activating caspase-9 and caspase-3. Furthermore, MTT assay confirmed a dose-dependent inhibitory effect of cisplatin in the tested tumor cells, and overexpression of XAF1 increased the sensitivity of SKOV-3 and SKOV-3/DDP cells to cisplatin-mediated antiproliferative effects. Conclusions: In summary, our data indicated that overexpression of XAF1 could suppress XIAP expression, inhibit invasion, arrest cell cycle, promote apoptosis, and confer cisplatin-sensitivity in SKOV-3 and SKOV-3/DDP cells. Therefore, XAF1 may be further assessed as a potential target for the treatment of both cisplatin-resistant and non-resistant EOCs.

Inhibition of c-FLIP by RNAi Enhances Sensitivity of the Human Osteogenic Sarcoma Cell Line U2OS to TRAILInduced Apoptosis

  • Zhang, Ya-Ping;Kong, Qing-Hong;Huang, Ying;Wang, Guan-Lin;Chang, Kwen-Jen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2251-2256
    • /
    • 2015
  • To study effects of cellular FLICE (FADD-like IL-$1{\beta}$-converting enzyme)-inhibitory protein (c-FLIP) inhibition by RNA interference (RNAi) on sensitivity of U2OS cells to tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-induced apoptosis, plasmid pSUPER-c-FLIP-siRNA was constructed and then transfected into U2OS cells. A stable transfection cell clone U2OS/pSUPER-c-FLIP-siRNA was screened from the c-FLIP-siRNA transfected cells. RT-PCR and Western blotting were applied to measure the expression of c-FLIP at the levels of mRNA and protein. The results indicated that the expression of c-FLIP was significantly suppressed by the c-FLIP-siRNA in the cloned U2OS/pSUPER-c-FLIP-siRNA as compared with the control cells of U2OS/pSUPER. The cloned cell line of U2OS/pSUPER-c-FLIP-siRNA was further examined for TRAILinduced cell death and apoptosis in the presence of a pan-antagonist of inhibitor of apoptosis proteins (IAPs) AT406, with or without 4 hrs pretreatment with rocaglamide, an inhibitor of c-FLIP biosynthesis, for 24 hrs. Cell death effects and apoptosis were measured by the methods of MTT assay with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and flow cytometry, respectively. The results indicated that TRAIL-induced cell death in U2OS/pSUPER-c-FLIP-siRNA was increased compared with control cells U2OS/pSUPER in the presence or absence of AT406. Flow cytometry indicated that TRAIL-induced cell death effects proceeded through cell apoptosis pathway. However, in the presence of rocaglamide, cell death or apoptotic effects of TRAIL were similar and profound in both cell lines, suggesting that the mechanism of action for both c-FLIP-siRNA and rocaglamide was identical. We conclude that the inhibition of c-FLIP by either c-FLIP-siRNA or rocaglamide can enhance the sensitivity of U2OS to TRAIL-induced apopotosis, suggesting that inhibition of c-FLIP is a good target for anti-cancer therapy.

A Novel Suberoylanilide Hydroxamic Acid Histone Deacetylase Inhibitor Derivative, N25, Exhibiting Improved Antitumor Activity in both Human U251 and H460 Cells

  • Zhang, Song;Huang, Wei-Bin;Wu, Li;Wang, Lai-You;Ye, Lian-Bao;Feng, Bing-Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.10
    • /
    • pp.4331-4338
    • /
    • 2014
  • $N^1$-(2, 5-dimethoxyphenyl)-$N^8$-hydroxyoctanediamide (N25) is a novel SAHA cap derivative of HDACi, with a patent (No. CN 103159646). This invention is a hydroxamic acid compound with a structural formula of $RNHCO(CH_2)6CONHOH$ (wherein R=2, 5dimethoxyaniline), a pharmaceutically acceptable salt which is soluble. In the present study, we investigated the effects of N25 with regard to drug distribution and molecular docking, and anti-proliferation, apoptosis, cell cycling, and $LD_{50}$. First, we designed a molecular approach for modeling selected SAHA derivatives based on available structural information regarding human HDAC8 in complex with SAHA (PDB code 1T69). N25 was found to be stabilized by direct interaction with the HDAC8. Anti-proliferative activity was observed in human glioma U251, U87, T98G cells and human lung cancer H460, A549, H1299 cells at moderate concentrations ($0.5-30{\mu}M$). Compared with SAHA, N25 displayed an increased antitumor activity in U251 and H460 cells. We further analyzed cell death mechanisms activated by N25 in U251 and H460 cells. N25 significantly increased acetylation of Histone 3 and inhibited HDAC4. On RT-PCR analysis, N25 increased the mRNA levels of p21, however, decreased the levels of p53. These resulted in promotion of apoptosis, inducing G0/G1 arrest in U251 cells and G2/M arrest in H460 cells in a time-dependent and dose-dependent manner. In addition, N25 was able to distribute to brain tissue through the blood-brain barrier of mice ($LD_{50}$: 240.840mg/kg). In conclusion, our findings demonstrate that N25 will provide an invaluable tool to investigate the molecular mechanism with potential chemotherapeutic value in several malignancies, especially human glioma.

Regulation of Interleukin-17 Production in Patients with Rheumatoid Arthritis by Phosphoinositide 3-kinase (PI3K)/Akt and Nuclear Factor KappaB (NF-κB) Dependent Signal Transduction Pathway (류마티스 관절염 환자의 말초혈액 단핵세포에서 Phosphoinositide 3-Kinase (PI3K)/Akt와 Nuclear Factor KappaB (NF-κB) 신호전달을 통한 IL-17 생성조절)

  • Kim, Kyoung-Woon;Cho, Mi-La;Lee, Sang-Heon;Min, So-Youn;Park, Mi Kyung;Park, Sung-Hwan;Jue, Dae-Myung;Kim, Ho-Youn
    • IMMUNE NETWORK
    • /
    • v.3 no.4
    • /
    • pp.310-319
    • /
    • 2003
  • Inflammatory mediators has been recognized as an important role in the pathogenesis of rheumatoid arthritis (RA). IL-17 is increasingly recognized as an important regulator of immune and inflammatory responses, including induction of proinflammatory cytokines and osteoclastic bone resorption. Evidence of the expression and proinflammatory activity of IL-17 has been demonstrated in RA synovium and in animal models of RA. However, the signaling pathways that regulate IL-17 production remain unknown. In the present study, we investigated the role of the phosphatidylinositol 3 kinase (PI3K)-Akt pathway in the regulation of IL-17 production in RA. PBMC were separated from RA (n=24) patients, and stimulated with various agents (anti CD3, anti CD28, PHA, ConA, IL-15). IL-17 levels were determined by sandwich ELISA and RT-PCR. The production of IL-17 was significantly increased in cells treated with anti-CD3 antibody, PHA, IL-15 or MCP-1 (P<0.05). ConA also strongly induced IL-17 production (P<0.001), whereas TNF-alpha, IL-1beta, IL-18 or TGF-beta did not. IL-17 was detected in the PBMC of patients with osteoarthritis (OA) but their expression levels were much lower than those of RA PBMC. Anti-CD3 antibody activated the PI3K-Akt pathway and activation of the PI3K-Akt pathway resulted in a pronounced augmentation of nuclear factor kappaB ($NF-{\kappa}B$). IL-17 production by activated PBMC in RA is completely or partially blocked in the presence of $NF-{\kappa}B$ inhibitor PDTC and PI3K-Akt inhibitor, wortmannin and LY294002, respectively. Whereas the inhibition of AP-1 and extracellular signal-regulated kinase (ERK)1/2 did not affect IL-17 production. These results provide new insight into that PI3K/Akt and $NF-{\kappa}B$ dependent signal transduction pathway could be involved in the overproduction of key inflammatory cytokine, IL-17 in rheumatoid arthritis.

The Effect of Alkali- and Heat-Treated Titanium Surfaces on Differentiation of Osteoblast (티타니움 표면의 알칼리-열처리가 골모세포의 분화에 미치는 영향)

  • Kang, Choong Hee;Vang, Mong-Sook;Yang, Hong-so;Park, Sang-Won;Lim, Hyun-Pil
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.3
    • /
    • pp.293-306
    • /
    • 2009
  • In this study, the biological response of fetal rat calvarial cells on alkali- and heat-treated titanium was assessed. The results were as follows; Cell proliferation on alkali- and heat-treated surfaces showed significantly higher level than on the titanium-6aluminum-4vanadium (weight percentage: 6 % aluminum, 4 % vanadium, Ti-6Al-4V) surface (p<0.01). In ELISA analysis, concentration of $IL-1{\beta}$ and IL-6 were raised when the cells were grown to day 7. Pre-treatment with herbimycin, a known tyrosine kinase inhibitor, suppressed the production of IL-6 (p<0.01). In comparison to commercially pure titanium (grade II, cp-Ti) and Ti-6Al-4V alloy, alkali- and heat-treated titanium enhanced alkaline phosphatase activity (p<0.001). In RT-PCR analysis, alkaline phosphatase, bone sialoprotein, receptor activated nuclear factor ligand mRNA expression was increased alkali- and heat-treated titanium. Herbimycin and SB203580, p38 MAPK inhibitor, were repressed of $IL-1{\beta}-induced$ IL-6 mRNA expression. These results suggest that alkali- and heat-treated titanium stimulate osteoblasts differentiation and facilitate bone remodeling.

[ $P2X_2$ ] Receptor Activation Potentiates PC12 Cell Differentiation Induced by ACAP in Acidic Environments

  • Lee, Myung-Hoon;Nam, Jin-Sik;Ryu, Hye-Myung;Yoo, Min;Lee, Moon-Hee
    • Biomedical Science Letters
    • /
    • v.13 no.3
    • /
    • pp.197-206
    • /
    • 2007
  • P2X receptors are membrane-bound ion channels that conduct $Na^+,\;K^+$, and $Ca^{2+}$ in response to ATP and its analogs. There are seven subunits identified so far ($P2X_1-P2X_7$). $P2X_2$ receptors are known to be expressed in a wide range of organs including brains and adrenal grands. PC12 cells are originated from adrenal grand and differentiated by nerve growth factor or pituitary adenylate cyclase activating poly peptide (PACAP). Previous studies indicate that $P2X_2$ receptor activation in PC12 cells couples to $Ca^{2+}-dependent$ release of catecholamine and ATP. It is known that acidic pH potentiates ATP currents at $P2X_2$ receptors. This leads to a hypothesis that $P2X_2$ receptors may play an important role in PC12 cell differentiation, one of the characteristics of which is neurite outgrowth, induced by the hormones under lower pH. In the present study, we isolated several clones which potentiate neurite outgrowth by PACAP in acidic pH (6.8), but not in alkaline pH (7.6). RT-PCR and electrophysiology data indicate that these clones express only functional $P2X_2$ receptors in the absence or presence of PACAP for 3 days. Potentiation of neurite outgrowth resulted from PACAP (100 nM) in acidic pH is inhibited by the two P2X receptor antagonists, suramin and PPADS ($100\;{\mu}M)$ each), and exogenous exprerssion of ATP-binding mutant $P2X_2$ receptor subunit ($P2X_2[K69A]$). However, acid sensing ion channels (ASICs) are not involved in PACAP-induced neurite outgrowth potentiation in lower pH since treatments of an inhibitor of ASICs, amyloride ($10\;{\mu}M$), did not give any effects to neurite extension. The vesicular proton pump ($H^+-ATPase$) inhibitor, bafilomycin (100 nM), reduced neurite extension indicating that ATP release resulted from $P2X_2$ receptor activation in PC12 cells is needed for neurite outgrowth. These were confirmed by activation of mitogen activated protein kinases, such as ERKs and p38. These results suggest roles of ATP and $P2X_2$ receptors in hormone-induced cell differentiation or neuronal synaptogenesis in local acidic environments.

  • PDF

Construction and Production of Concatameric Human TNF Receptor-Immunoglobulin Fusion Proteins

  • Yim, Su-Bin;Chung, Yong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.81-89
    • /
    • 2004
  • Tumor necrosis factor-$\alpha$ (TNF-$\alpha$) and lymphotoxin-$\alpha$ (LT-$\alpha$, TNF-$\beta$) can initiate and perpetuate human diseases such as multiple sclerosis (MS), rheumatoid arthritis (RA), and insulin-dependent diabetes mellitus (IDDM). TNFs can be blocked by the use of soluble TNF receptors. However, since monomeric soluble receptors generally exhibit low affinity or function as agonists, the use of monomeric soluble receptors has been limited in the case of cytokines such as TNF-$\alpha$, TNF-$\alpha$, interleukin (IL)-1, IL-4, IL-6, and IL-13, which have adapted to a multi component receptor system. For these reasons, very high-affinity inhibitors were created for the purpose of a TNFs antagonist to bind the TNFR and trigger cellular signal by using the multistep polymerase chain reaction method. First, recombinant simple TNFR-Ig fusion proteins were constructed from the cDNA sequences encoding the extracellular domain of the human p55 TNFR (CD120a) and the human p75 TNFR (CD120b), which were linked to hinge and constant regions of human $IgG_1$ heavy chain, respectively using complementary primers (CP) encoding the complementary sequences. Then, concatameric TNFR-Ig fusion proteins were constructed using recombinant PCR and a complementary primer base of recombinant simple TNFR-Ig fusion proteins. For high level expression of recombinant fusion proteins, Chinese hamster ovary (CHO) cells were used with a retroviral expression system. The transfected cells produced the simple concatameric TNFR-Ig fusion proteins capable of binding TNF and inactivating it. These soluble versions of simple concantameric TNFR-Ig fusion proteins gave rise to multiple forms such as simple dimers and concatameric homodimers. Simple TNFR-1g fusion proteins were shown to have much more reduced TNF inhibitory activity than concatameric TNFR-Ig fusion proteins. Concatameric TNFR-Ig fusion proteins showed higher affinity than simple TNFR-Ig fusion proteins in a receptor inhibitor binding assay (RIBA). Additionally, concatameric TNFR-Ig fusion proteins were shown to have a progressive effect as a TNF inhibitor compared to the simple TNFR-Ig fusion proteins and conventional TNFR-Fc in cytotoxicity assays, and showed the same results for collagen induced arthritis (CIA) in mice in vivo.