• 제목/요약/키워드: PCR inhibitor

검색결과 393건 처리시간 0.024초

건칠이 비만세포 매개 염증반응에 미치는 영향 (The Effects of Lacca Sinica Exsiccata (LSE) on the Mast Cell-mediated Inflammatory Responses)

  • 김석산;김경준
    • 한방안이비인후피부과학회지
    • /
    • 제22권1호
    • /
    • pp.33-45
    • /
    • 2009
  • Objective : Lacca Sinic: Exsiccate (LSE) extracted from Rhus vemicitlus Stokes (RVS) has been used traditionally as a remedy for inflammation in Korea, China, and Japan. However, as yet there is no clear explanation of how LSE affects the production of inflammatory cytokines. This study was to determine the effects of LSE on the mast cell-mediated inflammatory responses. Method : We measured the amount of inflammatory cytokine production induced by the phorbol myristate acetate (PMA) plus calcium ionophore(A231S7) in the human mast cell line (HMC-l) incubated with various concentrations of Laces Sinica Exsiccate (LSE). The $TNF-\alpha$, IL-6 and IL-8 secreted protein levels were measured by the ELISA assay. The $TNF-\alpha$, IL-6 and IL-8 mRNA levels were measured by the RT-PCR analysis. Nuclear and cytoplasmic proteins were examined by Western blot analysis. The NF-${\kappa}B$ promoter activity was examined by a luciferase assay. Result : LSE inhibited the PMA + A231S7-induced $TNF-\alpha$, IL-6, and IL-8 expression and suppressed NF-${\kappa}B$ activation in the stimulated-HMC-1. In addition, LSE inhibited induction of NF-${\kappa}B$ promoter-mediated luciferase activity. Conclusion : In this study, we have found that LSE is an inhibitor of NF-${\kappa}B$ and cytokines on the mast cell-mediated inflammatory responses.

  • PDF

An Efficient Approach for Cloning P450 Hydroxylase Genes from Actinomycetes

  • Hyun, Chang-Gu;Kim, Jung-Mee;Hong, Soon-Kwang;Suh, Joo-Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제8권3호
    • /
    • pp.295-299
    • /
    • 1998
  • Oligonucleotide primers were designed and successfully applied to amplify DNA fragments of P450 hydroxylase genes from actinomycetes which produce a large variety of medically important metabolites. Primers were designed based on several regions of strong similarities in amino acid sequence of P450 hydroxylases from a variety of actinomycetes, primarily in the regions of an oxygen binding site and a heme ligand pocket. These primers were used to amplify DNA fragments from seven different actinomycetes species producing a variety of different compounds. The deduced amino acid sequences of the isolated fragments revealed significant similarities to known P450 hydroxylase including the product of the suaC or subC genes from Streptomyces griseolus that is capable of metabolizing a number of sulfonylurea herbicides, and to the product of the $P450_{sca2}$ from S. carbophilus that produces a specific HMG-CoA reductase inhibitor. This method should help researchers in cloning the P450 hydroxylase genes involved in the biosynthesis of useful compounds.

  • PDF

The Inhibiton Effects of Hypercholesterolemia and Platelet in Fermented and Non-Fermented Preparation of Garlic

  • Kim, Hyun-Kyoung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제11권4호
    • /
    • pp.1-10
    • /
    • 2019
  • This Dietary cholesterol augments lipid profile and primes production and activation of platelets, leading to development of atherosclerosis which produce several detrimental effects on cardiovascular health. Ethnomedicine and Mediterranean diet are natural sources and cost effective modes against several ailments including cardiovascular diseases while fermented foods have gained interest due to their increased nutrient profile, enhanced bioavailability and efficacy. Garlic has been known to reduce cholesterol and inhibit platelet activation. We examined whether fermented garlic ameliorates effects of hypercholesterolemia and platelet functions in rats. Methodology: Male SD rats were fed with hypercholesterolemia diet and treated with spirulina, fermented and non-fermented preparations of garlic for one month. Platelet aggregation and granule secretion were assessed to evaluate platelet activation. Liver and kidney weights, lipid and enzymatic profile of serum and whole blood analysis was performed. Expressions of SREBP, ACAT-2 and HMG-CoA were assessed using RT-PCR while liver and adipose tissues were analyzed for histological changes. Both fermented and non-fermented garlic inhibited platelet aggregation and granule secretion while fermented garlic showed greater inhibitor tendency. Fermented garlic significantly reduced liver weight and triglycerides concentrations than non-fermented garlic. Similarly, fermented garlic greatly abrogated the detrimental effects of steatosis on liver and adipose tissues. Fermented garlic significantly improved lipid profile and modulated platelet functions, thereby inhibiting atherosclerosis and platelet related cardiovascular disorders.

대계(大薊)의 주성분인 Silibinin이 알레르기 염증반응에 미치는 효과(效果) (The Effect of Silibinin Extracted from Cirsium Japonicum on Allergic Inflammation)

  • 김범락;김경준
    • 한방안이비인후피부과학회지
    • /
    • 제23권1호
    • /
    • pp.44-58
    • /
    • 2010
  • Silibinin is the major active molecule of silymarin, the mixture of flavonolignans extracted from Cirsium japonicum (CJ). It has been used for treatment of hepatitis and inflammation related diseases. The aim of this study was to prove whether Silibinin has effectiveness for allergic inflammation. Silibinin processes the inflammatory reaction in phorbol 12-myristate 13-acetate (PMA) plus calcium ionophore A23187 (PMA plus A23187) stimulated human mast cell line (HMC-1). Its effect was examined by ELISA, RT-PCR, Western blot, and Luciferase assay. The results were Silibinin inhibited the expression of histamine, TNF-$\alpha$ (tumor necrosis factor-$\alpha$), IL-6 (interleukin-6), and IL-8 (interleukin-8). Silibinin suppressed NF-${\kappa}B$ (nuclear factor kappa B) activation in stimulated HMC-1 (human mast cell-1). This effect was mediated through inhibition of phosphorylation and degradation of $IkB{\alpha}$, an inhibitor of NF-kB. Silibinin significantly inhibited induction of NF-kB promoter mediated Luciferase assay. These results suggest that Silibinin has a potential molecule for therapy of mast cell-derived allergic inflammatory diseases.

Enhancement of Osteogenic Differentiation by Combination Treatment with 5-azacytidine and Thyroid-Stimulating Hormone in Human Osteoblast Cells

  • Sun, Hyun Jin;Song, Young Shin;Cho, Sun Wook;Park, Young Joo
    • International journal of thyroidology
    • /
    • 제10권2호
    • /
    • pp.71-76
    • /
    • 2017
  • Background and Objectives: The role of thyroid-stimulating hormone (TSH) signaling on osteoblastic differentiation is still undetermined. The aim of this study was to investigate the effects of 5-aza-2'-deoxycytidine (5-azacytidine) on TSH-mediated regulations of osteoblasts. Materials and Methods: MG63, a human osteoblastic cell-line, was treated with 5-azacytidine before inducing osteogenic differentiation using osteogenic medium (OM) containing L-ascorbic acid and ${\beta}$-glyceophosphate. Bovine TSH or monoclonal TSH receptor stimulating antibody (TSAb) was treated. Quantitative real-time PCR analyses or measurement of alkaline phosphatase activities were performed for evaluating osteoblastic differentiation. Results: Studies for osteogenic-related genes or alkaline phosphatase activity demonstrated that treatment of TSH or TSAb alone had no effects on osteoblastic differentiation in MG63 cells. However, treatment of 5-azacytidine, per se, significantly increased osteoblastic differentiation and combination treatment of 5-azacytidine and TSH or TSAb in the condition of OM showed further significant increase of osteoblastic differentiation. Conclusion: Stimulating TSH signaling has little effects on osteoblastic differentiation in vitro. However, in the condition of epigenetic modification using inhibitor of DNA methylation, TSH signaling positively affects osteoblastic differentiation in human osteoblasts.

The Role of Genetic Diagnosis in Hemophilia A

  • Lee, Ja Young
    • Journal of Interdisciplinary Genomics
    • /
    • 제4권1호
    • /
    • pp.15-18
    • /
    • 2022
  • Hemophilia A is a rare X-linked congenital deficiency of clotting factor VIII (FVIII) that is traditionally diagnosed by measuring FVIII activity. Various mutations of the FVIII gene have been reported and they influence on the FVIII protein structure. A deficiency of or reduction in FVIII protein manifests as spontaneous or induced bleeding depending on the disease severity. Mutations of the FVIII gene provide important information on the severity of disease and inhibitor development. FVIII mutations also affect the discrepant activities found using different FVIII assays. FVIII activity is affected differently depending on the mutation site. Long-range PCR is commonly used to detect intron 22 inversion, the most common mutation in severe hemophilia. However, point mutations are also common in patients with hemophilia, and direct Sanger sequencing and copy number variant analysis are being used to screen for full mutations in the FVIII gene. Advances in molecular genetic methods, such as next-generation sequencing, may enable accurate analysis of mutations in the factor VIII gene, which may be useful in the diagnosis of mild to moderate hemophilia. Genetic analysis is also useful in diagnosing carriers and managing bleeding control. This review discusses the current knowledge about mutations in hemophilia and focuses on the clinical aspects associated with these mutations and the importance of genetic analysis.

Characterization of immune gene expression in rock bream (Oplegnathus fasciatus) kidney infected with rock bream iridovirus (RBIV) using microarray

  • Myung-Hwa Jung;Sung-Ju Jung
    • 한국어병학회지
    • /
    • 제36권2호
    • /
    • pp.191-211
    • /
    • 2023
  • Rock bream iridovirus (RBIV) causes high mortality and economic losses in rock bream (Oplegnathus fasciatus) aquaculture industry in Korea. Although, the immune responses of rock bream under RBIV infection have been studied, there is not much information at the different stages of infection (initial, middle and recovery). Gene expression profiling of rock bream under different RBIV infection stages was investigated using a microarray approaches. In total, 5699 and 6557 genes were significantly up- or down-regulated over 2-fold, respectively, upon RBIV infection. These genes were grouped into categories such as innate immune responses, adaptive immune responses, complements, lectin, antibacterial molecule, stress responses, DNA/RNA binding, energy metabolism, transport and cell cycle. Interestingly, hemoglobins (α and β) appears to be important during pathogenesis; it is highly up-regulated at the initial stage and is gradually decreased when the pathogen most likely multiplying and fish begin to die at the middle or later stage. Expression levels were re-elevated at the recovery stage of infection. Among up-regulated genes, interferon-related genes were found to be responsive in most stages of RBIV infection. Moreover, X-linked inhibitor of apoptosis (XIAP)-associated factor 1 (XAF1) expression was high, whereas expression of apoptosis-relate genes were low. In addition, stress responses were highly induced in the virus infection. The cDNA microarray data were validated using quantative real-time PCR. Our results provide novel inslights into the broad immune responses triggered by RBIV at different infection stages.

TP53 upregulates α-smooth muscle actin expression in tamoxifen-resistant breast cancer cells

  • Sangmin Kim;Daeun You;Yisun Jeong;Jonghan Yu;Seok Won Kim;Seok Jin Nam;Jeong Eon Lee
    • Oncology Letters
    • /
    • 제41권2호
    • /
    • pp.1075-1082
    • /
    • 2019
  • In a previous study, we reported that α-smooth muscle actin (α-SMA), one of the mesenchymal marker proteins, is highly expressed in tamoxifen-resistant breast cancer (TamR) cells. However, the exact mechanism of α-SMA expression in TamR cells is not fully understood. Here, we investigated the effect of TP53 on α-SMA expression in breast cancer cells. The levels of α-SMA mRNA and protein expression were analyzed by real-time PCR and western blotting, respectively. In estrogen receptor-positive [ER(+)] breast cancer patients, aberrant α-SMA expression was found to be associated with a poor prognosis. The level of α-SMA expression was significantly increased in established TamR cells compared to tamoxifen-sensitive (TamS) cells. To verify the regulatory mechanism of α-SMA expression, we analyzed diverse kinase activities between TamS and TamR cells. The activity of TP53 was markedly increased in the TamR cells. When TamS cells were treated with TP53 activator, Nutlin3 (Nut3), α-SMA expression was increased in the TamS cells. In addition, α-SMA expression was significantly increased by TP53 overexpression in breast cancer cells. On the contrary, the basal level of α-SMA expression was decreased by the TP53 inhibitor, pifithrin-α (PFT-α). Taken together, we demonstrated that α-SMA expression is regulated by TP53 activity in TamR cells.

LIPUS Promotes Endothelial Differentiation and Angiogenesis of Periodontal Ligament Stem Cells by Activating Piezo1

  • Rui Hu;Zheng-yan Yang;Yue-heng Li;Zhi Zhou
    • International Journal of Stem Cells
    • /
    • 제15권4호
    • /
    • pp.372-383
    • /
    • 2022
  • Background and Objectives: Low-intensity pulsed ultrasound (LIPUS) promotes differentiation and regulates biological functions of various stem cells, but its effect on the endothelial differentiation of periodontal ligament stem cells (PDLSCs) is unclear. This study investigated the effect of LIPUS on endothelial differentiation and angiogenesis in PDLSCs and the role of the mechanically sensitive ion channel Piezo1 in this process. Methods and Results: PDLSCs obtained from healthy people were used for endothelial induction, and 10 ㎍/ml lipopolysaccharide (LPS) was used to simulate the inflammatory state. The induced cells were treated with LIPUS (50 mW/cm2, 1.5 MHz) to study its effect on the endothelial differentiation of PDLSCs and the tube formation of differentiated cells. PCR, flow cytometry, immunofluorescence, and Matrigel tube formation assays were used to detect the differentiation and tube formation of PDLSCs. GsMTx4 was used to inhibit the expression of Piezo1, and the role of the Piezo1 pathway in the endothelial differentiation and microvascular formation of PDLSCs after LIPUS treatment was studied. The data showed that LIPUS increased endothelial differentiation and angiogenesis in PDLSCs under inflammatory or noninflammatory conditions. The use of an inhibitor weakened the effect of LIPUS. Conclusions: This study demonstrated that LIPUS can activate the expression of Piezo1 and promote the endothelial differentiation and microvascular formation of PDLSCs.

형질 전환된 포플러에 대한 nos-NPT II 유전자의 기관별 발현 특성 (Organ Specific Expression of the nos-NPT II Gene in Transgenic Hybrid Poplar)

  • 전영우
    • 한국산림과학회지
    • /
    • 제84권1호
    • /
    • pp.77-86
    • /
    • 1995
  • 임목을 대상으로 삽입된 외래 유전자의 공간적, 시기별 발현 특성을 이해하기 위한 기초연구로서 온실에서 생육 중인 형질전환된 2년생 잡종 포플러 (Populus alba X P. grandidentata) Hansen 클론을 대상으로 삽입된 외래 유전자의 발현정도를 각 기관별로 조사하였다. Agrobacterium binary vector pRT45, pRT102 및 pRT104에 의해서 형질전환된 3계통의 형질전환체 Tr15, Tr345, Tr665 모두는 선발가능한 표식 유전자로서 nos promoter-NPT II 유전자가 대상 식물체의 genome에 삽입되어 있으며, 그외에, pin2 promoter-CAT 유전자(pRT45), nos promoter-PIN2 유전자(pRT102), Cauliflower Mosaic Virus 35s promoter-PIN2 유전자(pRT104)가 3계통의 형질전환체에 제각각 삽입되어 있는 잡종 포플러이다. 이들 3계통의 형질전환 포플러 식물체의 DNA를 PCR 검정 기법을 이용하여 분석해 본 결과 선발 가능한 표식 유전자인 NPT-II가 삽입되어 있음이 입증되었다 발현 정도를 비교 분석하기 위해서 NPT-ELISA 검정을 실시하였다. 삽입된 NPT II 유전자는 형질전환된 포플러의 잎, 엽병, 형성층 조직, 줄기의 목질부, 뿌리에서 발현되었으며, 발현 정도는 형질전환된 식물체의 계통에 따라서, 그리고 형진전환된 식물체의 부위에 따라서 다양하게 나타났다. pRT45에 의해서 형질전환된 Tr15 형질전환체의 경우, 늙은 잎과 엽병에서 NPT II 유전자가 가장 높은 수준으로 발현되었으며, 어린 잎과 뿌리 조직에서 가장 낮게 발현되었다. 삽입된 외래 유전자가 각 식물체간에, 각 기관에 따라서 각각 상이한 발현 정도를 나타내는 이와 같은 결과는 형질전환된 식물체에 대한 효과적인 선발과정이 요구됨을 의미함은 물론이고, 형질전환 식물체의 발달 과정에 따라서 삽입된 외래 유전자가 공간적, 시기적으로 각각 다르게 발현할 수 있다는 것을 나타낸다.

  • PDF