• Title/Summary/Keyword: PCR application

Search Result 450, Processing Time 0.023 seconds

Protective Effect of water extract Phellinus linteus-discard Schisandra chinensis solid fermented extracts on improvement of sarcopenia by Atorvastatin-induced muscle atrophy cell model (Atorvastatin으로 유도된 근위축 세포모델에서 상황-오미자박 고상발효물 열수추출물의 보호효과)

  • Kim, Young-Suk;Hwang, Su-Jin;Park, Kwang-Il;Lim, Jong-Min;Cheon, Da-Mi;Jung, Yu Jin;Jeon, Byeong Yeob;Kwak, Kyeung Tae;Oh, Tae Woo
    • Herbal Formula Science
    • /
    • v.29 no.4
    • /
    • pp.239-252
    • /
    • 2021
  • Objectives : This study is to effect of improving muscle atrophy through water extract on the solid-phase fermentation extraction with Phellinus linteus of discarded Schisandra chinensis in an atorvastatin-induced atrophy C2C12 cell. Methods : C2C12 myoblast were differentiated into myotube by 2% horse serum medium for 6 days, and then treated solid-phase fermentation(S-P) extract at different concentrations for 24h. To investigate the effect of S-P extract on the induction of muscle atrophy and expression of atrophy-related genes and apoptosis in differentiated C2C12 myotubes using a GSH, ROS, real-time PCR, western blots analysis. Results : As a result of treatment with atorvastatin at concentrations of 5, 10, and 20 uM on the 6th day of differentiation in C2C12 myotube cells, it was confirmed that the cell morphology was damaged in a concentration-dependent manner, and the length and thickness of the myotube also decreased in a concentration-dependent manner. Treatment with S-P extract (50, 100 and 200 ㎍/㎖) increased of GSH and inhibited ROS in the atorvastatin-induced muscle atrophy cell model at a concentration that did not induce toxicity. In addition, it was confirmed that it has an effect on muscle reduction by inhibiting apoptosis of muscle cells as well as being involved in protein production and degradation of muscle cells. Conclusions : Atorvastatin-induced atrophy C2C12 cell, S-P extract activates related to differentiation/generation and proteolysis, and inhibits cell death of atrophy in C2C12 cell. Based on this, it is necessary to prove its effectiveness through animal models and human application test, but it is considered to be discarded Schisandra chinensis can present the potential for development as a recycling industrial material.

Rotavirus P and G Genotypes Circulating in Kyungsangnamdo, Korea, during 2000~2001 (2000~2001년 경상남도에서 유행한 로타바이러스 유전자형)

  • So, Kyeung Jin;Lee, Mi Hyun;Ma, Sang Hyeok;Kim, Byung Chyeol;Yang, Jai Myung
    • Pediatric Infection and Vaccine
    • /
    • v.11 no.1
    • /
    • pp.59-72
    • /
    • 2004
  • Purpose : Rotaviruses are the major cause of gastroenteritis in infants and young children worldwide. It is important to get the epidemiologic data of rotavirus genotype for the application of rotavirus vaccine. So we tried to investigate the distribution of rotavirus genotypes with RT-PCR. Methods : A total of 120 rotavirus latex agglutinin test positive stool samples were collected continually from 120 children from Sep. 2000 to Apr. 2001. Rotavirus P(VP4), G (VP7) genotypes were determined by RT-PCR. Results : The genotype was identified in 116 stool samples of total 120 samples(96%). The incidence of G genotype was as follow; G1 17(14.2%), G2 74(61.7%), G4 1(0.8%), G9 1(0.8%). There were four cases of multiple genotypes; G1/G2, G1/G4, G1/G9, G8/G9 and genotype of G3, G8 were not found. Twenty three(19.2%) samples were nontypeable. The incidence of P was as follow; P[4] 77(64.2%), P[6] 22(18.3%), P4/P6 12(10%), P[4]/P[8] 1(0.8%) p[8] 1(0.8%). Seven(5.9%) samples were nontypeable. Conclusion : Various combinations of G and P genotypes were observed. Most rotavirus strains were P[4]G2 62(51.74%), followed by P[6]G2 7(5.8%), and P[6]G1 7(5.8%), P[4/P[6] G1 4(3%), P[4]/P[6]G2 4(3%), P[4]G1 3(2.5%), P[8]G2 1(0.8%), P[4]G4 1(0.8%) in Kyoungsangnamdo, Korea during 2000~2001.

  • PDF

The Effects of Chelidonii Herba on the Proliferation of Eosinophils and Activation of Immuno-cells in Asthma-induced Mouse (백굴채(白屈菜)가 천식유발 생쥐의 폐조직에서 호산구 증식과 면역 세포 활성화에 미치는 영향)

  • Roh, Seong-Soo
    • The Korea Journal of Herbology
    • /
    • v.23 no.2
    • /
    • pp.99-109
    • /
    • 2008
  • Objectives : The present study was to investigate the effect of extract of Chelidonii herba (ECH) on the proliferation and activation of eosinophils which were prepared from lung cells of asthma-induced mouse by ovalbumin (OVA) treatment. Methods : C57BL/6 mouse was exposed to OVA three times a week for 6 weeks. The mouse lung tissues were dissected out, chopped and dossiciated with collagenase (1 ${\mu}g$/ml). Eosinophils were activated by rIL-3/rmIL-5 co-treatments. The lung cells were treated with ECH, incubated for 48 hr at $37^{\circ}C$, and analyzed by flow cytometery, ELISA, RT-PCR, and immuno-histochemical analysis. Results : In FACS analysis, number of granulocyte/lymphocyte, $CD3e^-$/$CCR3^+$, $CD3e^+$/$CD69^+$, $CD4^+$ and $CD23^+$/$B220^+$ in asthma-induced lung cells were significantly decreased by ECH treatment compared to the control group. And mRNA expression for IL-4, IL-5, IL-13, CCR3 and eotaxin in asthma-induced lung cells, which was induced by rIL-3 plus rmIL-5 treatments, was significantly decreased by ECH treatment. In ELISA analysis, production levels of IL-3, IL-5, IL-13 and histamine in asthma-induced lung cells, which were induced by rIL-3 plus rmIL-5 co-treatment, were significantly decreased by ECH treatment. ECH treatments significantly inhibited the proliferation of eosinohils prepared from asthma-induced mouse lung tissues compared to the non-ECH treated control cells. Immunohistochemical analysis revealed that ECH treatment significantly decreased the levels of eosipnphil activation compared to non-treated cells. Conclusions : The present data suggested that Chelidonium majus L. may have an effect on the inhibition of parameters associated with asthma responses in eosinpophils, and thus implicate the possibility for the clinical application of Chelidonium majus L.

  • PDF

Analysis of Single Nucleotide Polymorphisms of Leptin Gene in Hanwoo(Korean Cattle) (한우 Leptin 유전자의 단일 염기 다형성 분석)

  • Lee, J.-Min;Song, G.C.;Lee, J.Y.;Kim, Young-Bong
    • Journal of Animal Science and Technology
    • /
    • v.49 no.3
    • /
    • pp.295-302
    • /
    • 2007
  • Leptin, the product of the obese(ob) gene, is an adipocyte-derived hormone for the regulation of whole- body energy storage and energy usage. It has been reported that the homozygous mutations in the gene for leptin(LEP) induce obesity and reduce energy expenditure. In cattle, LEP has significant roles directly or indirectly related with phenotypes such as body weight and fat deposits, therefore SNPs of LEP have been considered important genetic marker to estimate carcass fat content in cattle. In this study, SNPs were screened in LEP(2,222 bp) between intron 1 to 3'-UTR from 24 independent Hanwoo(Korean cattle) by PCR and DNA sequencing. Total 25 SNPs were found and two nonsynonymous SNPs including T1163A(V19E) and G3256A(G132D) were newly detected only from Hanwoo. Among 20 SNPs previously reported in cattle, 16 SNPs were found in Hanwoo; however, the frequencies of some SNPs were significantly different between Hanwoo and western cattle breeds. The other 4 SNPs were not detected from Hanwoo. These Hanwoo specific SNP patterns in LEP will be used in development of molecular marker and application to genetic improvement of Hanwoo.

Virus-induced Gene Silencing as Tool for Functional Genomics in a Glycine max

  • Jeong, Rae-Dong;Hwang, Sung-Hyun;Kang, Sung-Hwan;Choi, Hong-Soo;Park, Jin-Woo;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.21 no.2
    • /
    • pp.158-163
    • /
    • 2005
  • Virus-induced gene silencing (VIGS) is a recently developed gene transcript suppression technique for characterizing the function of plant genes. However, efficient VIGS has only been studied in a few plant species. In order to extend the application of VIGS, we examined whether a VIGS vector based on TRV would produce recognizable phenotypes in soybean. Here, we report that VIGS using the Tobacco rattle virus (TRV) viral vector can be used in several soybean cultivars employing various agro-inoculation methods including leaf infiltration, spray inoculation, and agrodrench. cDNA fragments of the soybean phytoene desaturase(PDS) was inserted into TRV RNA-2 vector. By agrodrench, we successfully silenced the expression of PDS encoding gene in soybean. The silenced phenotype of PDS was invariably obvious 3 weeks after inoculation with the TRV-based vector. Real-time RT-PCR analyses showed that the endogenous level of GmPDS transcripts was dramatically reduced in the silenced leaf tissues. These observations confirm that the silenced phenotype is closely correlated with the pattern of tissue expression. The TRV-based VIGS using agrodrench can be applied to functional genomics in a soybean plants to study genes involved in a wide range of biological processes. To our knowledge, this is the first high frequency VIGS method in soybean plants.

Inhibition of Human $CD8^+$ Cytotoxic T Lymphocyte (CTL) -mediated Cytotoxicity in Porcine Fetal Fibroblast Cells by Overexpression of Human Cytomegalovirus Glycoprotein Unique Short (US) 2 Gene

  • Park, K-W.;Yoo, J.Y.;Choi, K.M.;Yang, B.S.;Im, G.S.;Seol, J.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.1
    • /
    • pp.20-25
    • /
    • 2009
  • Xenotransplantation of pig organs into humans is a potential solution for the shortage of donor organs for transplantation. However, multiple immune barriers preclude its clinical application. In particular, the initial type of rejection in xenotransplantation is an acute cellular rejection by host $CD8^+$ cytotoxic T lymphocyte (CTL) cells that react to donor major histocompatibility complex (MHC) class I. The human cytomegalovirus (HCMV) glycoprotein Unique Short (US) 2 specifically targets MHC class I heavy chains to relocate them from the endoplasmic reticulum (ER) membrane to the cytosol, where they are degraded by the proteasome. In this study we transfected the US2 gene into minipig fetal fibroblasts and established four US2 clonal cell lines. The integration of US2 into transgenic fetal cells was confirmed using PCR and Southern blot assay. The reduction of Swine Leukocyte Antigen (SLA)-I by US2 was also detected using Flow cytometry assay (FACS). The FACS analysis of the US2 clonal cell lines demonstrated a substantial reduction in SLA-I surface expression. The level (44% to 76%) of SLA-I expression in US2 clonal cell lines was decreased relative to the control. In cytotoxicity assay the rate of $CD8^+$ T cell-mediated cytotoxicity was significantly reduced to 23.8${\pm}$15.1% compared to the control (59.8${\pm}$8.4%, p<0.05). In conclusion, US2 can directly protect against $CD8^+$-mediated cell lysis. These results indicate that the expression of US2 in pig cells may provide a new approach to overcome the CTL-mediated immune rejection in xenotransplantation.

Combined EGFR and c-Src Antisense Oligodeoxynucleotides Encapsulated with PAMAM Denderimers Inhibit HT-29 Colon Cancer Cell Proliferation

  • Nourazarian, Ali Reza;Najar, Ahmad Gholamhoseinian;Farajnia, Safar;Khosroushahi, Ahmad Yari;Pashaei-Asl, Roghiyeh;Omidi, Yadollah
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.9
    • /
    • pp.4751-4756
    • /
    • 2012
  • Colon cancer continues to be one of the most common cancers, and the importance and necessity of new therapies needs to be stressed. The most important proto-oncogen factors for colon cancer appear to be epidermal growth factor receptor, EGFR, and c-Src with high expression and activity leading to tumor growth and ultimately to colon cancer progression. Application of c-Src and EGFR antisense agents simultaneously should theoretically therefore have major benefit. In the present study, anti-EGFR and c-Src specific antisense oligodeoxynucleotides were combined in a formulation using PAMAM dendrimers as a carrier. Nano drug entry into cells was confirmed by flow cytometry and fluorescence microscopy imaging and real time PCR showed gene expression of c-Src and EGFR, as well as downstream STAT5 and MAPK-1 with the tumor suppressor gene P53 to all be downregulated. EGFR and c-Src protein expression was also reduced when assessed by western blotting techniques. The effect of the antisense oligonucleotide on HT29 cell proliferation was determined by MTT assay, reduction beijng observed after 48 hours. In summary, nano-drug, anti-EGFR and c-Src specific antisense oligodeoxynucleotides were effectively transferred into HT-29 cells and inhibited gene expression in target cells. Based on the results of this study it appears that the use of antisense EGFR and c-Src simultaneously might have a significant effect on colon cancer growth by down regulation of EGFR and its downstream genes.

Effect of Trichostatin A on CNE2 Nasopharyngeal Carcinoma Cells - Genome-wide DNA Methylation Alteration

  • Yang, Xiao-Li;Zhang, Cheng-Dong;Wu, Hua-Yu;Wu, Yong-Hu;Zhang, Yue-Ning;Qin, Meng-Bin;Wu, Hua;Liu, Xiao-Chun;Lina, Xing;Lu, Shao-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4663-4670
    • /
    • 2014
  • Trichostatin A (TSA) is a histone deacetylase (HDAC) inhibitor. We here investigated its effects on proliferation and apoptosis of the CNE2 carcinoma cell line, and attempted to establish genome-wide DNA methylation alteration due to differentially histone acetylation status. After cells were treated by TSA, the inhibitory rate of cell proliferation was examined with a CCK8 kit, and cell apoptosis was determined by flow cytometry. Compared to control, TSA inhibited CNE2 cell growth and induced apoptosis. Furthermore, TSA was found to induce genome-wide methylation alteration as assessed by genome-wide methylation array. Overall DNA methylation level of cells treated with TSA was higher than in controls. Function and pathway analysis revealed that many genes with methylation alteration were involved in key biological roles, such as apoptosis and cell proliferation. Three genes (DAP3, HSPB1 and CLDN) were independently confirmed by quantitative real-time PCR. Finally, we conclude that TSA inhibits CNE2 cell growth and induces apoptosis in vitro involving genome-wide DNA methylation alteration, so that it has promising application prospects in treatment of NPC in vivo. Although many unreported hypermethylated/hypomethylated genes should be further analyzed and validated, the pointers to new biomarkers and therapeutic strategies in the treatment of NPC should be stressed.

Molecular Analysis of Archaea, Bacteria and Eucarya Communities in the Rumen - Review-

  • White, B.A.;Cann, I.K.O.;Kocherginskaya, S.A.;Aminov, R.I.;Thill, L.A.;Mackie, R.I.;Onodera, R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.1
    • /
    • pp.129-138
    • /
    • 1999
  • If rumen bacteria can be manipulated to utilize nutrients (i.e., ammonia and plant cell wall carbohydrates) more completely and efficiently, the need for protein supplementation can be reduced or eliminated and the digestion of fiber in forage or agricultural residue-based diets could be enhanced. However, these approaches require a complete and accurate description of the rumen community, as well as methods for the rapid and accurate detection of microbial density, diversity, phylogeny, and gene expression. Molecular ecology techniques based on small subunit (SSU) rRNA sequences, nucleic acid probes and the polymerase chain reaction (PCR) can potentially provide a complete description of the microbial ecology of the rumen of ruminant animals. The development of these molecular tools will result in greater insights into community structure and activity of gut microbial ecosystems in relation to functional interactions between different bacteria, spatial and temporal relationships between different microorganisms and between microorganisms and reed panicles. Molecular approaches based on SSU rRNA serve to evaluate the presence of specific sequences in the community and provide a link between knowledge obtained from pure cultures and the microbial populations they represent in the rumen. The successful development and application of these methods promises to provide opportunities to link distribution and identity of gastrointestinal microbes in their natural environment with their genetic potential and in situ activities. The use of approaches for assessing pupulation dynamics as well as for assessing community functionality will result in an increased understanding and a complete description of the gastrointestinal communities of production animals fed under different dietary regimes, and lead to new strategies for improving animal growth.

Identification and Characterization of an Antifungal Protein, AfAFPR9, Produced by Marine-Derived Aspergillus fumigatus R9

  • Rao, Qi;Guo, Wenbin;Chen, Xinhua
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.5
    • /
    • pp.620-628
    • /
    • 2015
  • A fungal strain, R9, was isolated from the South Atlantic sediment sample and identified as Aspergillus fumigatus. An antifungal protein, AfAFPR9, was purified from the culture supernatant of Aspergillus fumigatus R9. AfAFPR9 was identified to be restrictocin, which is a member of the ribosome-inactivating proteins (RIPs), by MALDI-TOF-TOF-MS. AfAFPR9 displayed antifungal activity against plant pathogenic Fusarium oxysporum, Alternaria longipes, Colletotrichum gloeosporioides, Paecilomyces variotii, and Trichoderma viride at minimum inhibitory concentrations of 0.6, 0.6, 1.2, 1.2, and 2.4 μg/disc, respectively. Moreover, AfAFPR9 exhibited a certain extent of thermostability, and metal ion and denaturant tolerance. The iodoacetamide assay showed that the disulfide bridge in AfAFPR9 was indispensable for its antifungal action. The cDNA encoding for AfAFPR9 was cloned from A. fumigatus R9 by RT-PCR and heterologously expressed in E. coli. The recombinant AfAFPR9 protein exhibited obvious antifungal activity against C. gloeosporioides, T. viride, and A. longipes. These results reveal the antifungal properties of a RIP member (AfAFPR9) from marine-derived Aspergillus fumigatus and indicated its potential application in controlling plant pathogenic fungi.