• Title/Summary/Keyword: PCP-degradation

Search Result 20, Processing Time 0.019 seconds

Degradation of Pentachlorophenol by Lignin Degrading Fungi and Their Laccases

  • Cho, Nam-Seok;Cho, Hee-Yeon;Pham, Hop Thi Bich
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.5 s.133
    • /
    • pp.76-85
    • /
    • 2005
  • The degradation of pentachlorophenol (PCP) by lignin degrading fungi was performed. Several fungi, Abortiporus biennis, Cerrena unicolor and Trametes versicolor, were tested to evaluate the inhibitory effect of PCP on their growth. At the extremal concentration of PCP $(500\;{\mu}M)$, only C. unicolor showed relatively fast growth (60% within 14 days) in the comparison to the control culture. In the case of A. biennis and C. unicolor, when initial PCP concentration was $50\;{\mu}M$, about 88.2% and 79.5% of PCP degradation were achieved within 3 days, respectively. When 2,5-xylidine (0.2 mM) was added to the C. unicolor culture, as high as 98% of PCP degradation was achieved within just an hour after its addition. A. biennis removed 44% of PCP at the same condition. PCP was completely disappeared when laccase activities reached to maximum.

Anaerobic Biodegradation of PCP in Japanese Paddy Soils

  • Kim, Hyo-Keun;Inoue, Yasushi;Handa, Yuko;Yasuta, Tsuyoshi;Lee, Kyu-Seung;Katayama, Arata
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.3
    • /
    • pp.138-141
    • /
    • 2004
  • Seven soil samples were collected from paddy fields located nearby Nagoya city in Japan. All the soils were subjected to flooded condition and incubated with PCP at $30^{\circ}C$ for two months, and their anaerobic PCP degradation have been monitored by checking the PCP concentration of the soils at regular intervals. The degradation of PCP did not occur in the soils autoclaved two times before pre-incubation. On the other hand, all the soils showed significant PCP degradation in non-sterilized condition after 30 days of incubation, except far one soil sample (Yatomi), in which PCP was rarely degraded until 30 days of incubation. This result showed PCP disappearance in the pad(rf soils was mainly caused by microbiological activity, and depended upon the physicochemical characteristics of the soils.

Removal of pentachlorophenol by pentachlorophenol resistant strains isolated from activated sludge (활성오니에서 분리한 pentachlorophenol 내성균주의 pentachlorophenol 제거에 관한 연구)

  • Park, Yun-Hee;Cho, Sung-Eun;Lee, Woo-Sang;Jo, Do-Hyun
    • Applied Biological Chemistry
    • /
    • v.35 no.4
    • /
    • pp.242-247
    • /
    • 1992
  • Twenty strains of pentachlorophnol (PCP) resistant bacteria were isolated from activated sludge of the sewage treatment plant of Jung Lang Chun, Seoul. The predominant strains were Bacillus spp. including B. sphaericus and E. schlegelii. The other strains were identified as Corynebacterium spp., Staphylococcus aureus, Arthrobacter spp. and Aeromonas spp. The resistant strains could be grouped into two categories; PCP-degrading and PCP-adsorbing/absorbing ones. PCP-degrading strains degraded $75{\sim}90%$ of PCP in the medium containing 100 ppm PCP during the first 24 hours of growth. At the initial period the PCP-adsorbing/absorbing strains removed PCP from the medium but started to release PCP after 24 or 72 hours of growth. PCP degradation products from the culture broth of PCP-degrading strains were identified by comparing their $R_f$ values with those of the reference compounds. 2-chlorophenol and 2.4-dichlorophenol were presumed to be the intermediate products of PCP degradation.

  • PDF

Photocatalytic Degradation of Atrazine and PCP using TiO2 (TiO2 광촉매를 이용한 Atrazine과 PCP의 분해)

  • Park, Jae-Hong;An, Sang-Woo;Chang, Soon-Woong
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.577-582
    • /
    • 2004
  • The photocatalytic degradation of atrazine and PCP, a endocrine disruptors, has been investigated over $TiO_2$ photocatalysts under ultraviolet (UV) light irradiation. The effect of operational parameters, i.e., pH, light intensity and persulphate concentration on the degradation rate of aqueous solution of atrazine and PCP has been examined. The results presented in this work demonstrate that, as pH and the light intensity increased, the photocatalytic reaction rates were enhanced. Individual use of $TiO_2$-persulphate was far more effective than using only $TiO_2$ in atrazine and PCP removal. Based on the overall experimental results, the photocatalytic oxidation of atrazine and PCP with the coated $TiO_2$ photocatalyst is found to be very effective under the operational conditions delineated in this study.

Effect of Nutrient Nitrogen on the Degradation of Pentachlorophenol by White Rot Fungus, Phanerochaete chrysosporium

  • Chung, Nam-Hyun;Kang, Gu-Young;Kim, Gyu-Hyeok;Lee, Il-Seok;Bang, Won-Gi
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.704-708
    • /
    • 2001
  • The effect of nutrient nitrogen on the degradation of pentachlorophenol (PCP) by Phanerochaete chrysosporium in a liquid culture was investigated. PCP disappeared at almost the same rate in both nutrient nitrogen-sufficient (NS) and -limited (NL) sttionary cultures. However, more pentachloroanisole (PCA) was accumulated in the NS culture than in the NL culture. The effect of nitrogen on the degradation of PCA was also tested in both cultures. PCA disappeared faster in the NL culture than in the NS culture, indicating that the lower accumulation of PCA during the degradation of PCP in the NL culture was due to the faster degradation of PCA in the NL culture than in the NS culture. In another experiment, PCA was added to shaking cultures rather than stationary cultures to search for any other metabolite(s). While no other metabolite but PCA was found in the NS stationary culture, 2,4,5,6-tetrachloro-2,5-cyclohexadiene-1,4-dione(TCHD) was found as the only indentifiable product in the NL shaking culture. Thus, PCP would appear to be metabolized to TCHD via PCa or directly oxidized to TCHD by lignin peroxidase. Since all the above results indicate that no innocuous metabolite was formed during the degradation of PCP by the fungus, it is quite feasible to use the fungus in the biotreatment of PCP.

  • PDF

Biodegradation of Pentachlorophenol by Various White Rot Fungi (수질분해균(水質分解菌)에 의한 Pentachlorophenol의 미생물분해(微生物分解))

  • Choi, In-Gyu;Ahn, Sye-Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.53-62
    • /
    • 1998
  • In this research, 7 species of white rot fungi were used for determining the resistance against pentachlorophenol (PCP). Three fungi with good PCP resistance were selected for evaluating the biodegradability, and biodegradation mechanism by HPLC and GC/MS spectrometry. Among 7 fungi, there were significant differences on PCP resistance on 4 different PCP concentrations. In the concentrations of 50 and 100ppm ($\mu$g of PCP per g of 2% malt extract agar), most fungi were easily able to grow, and well suited to newly PCP-added condition, but in that of more than 250ppm, the mycelia growths of Ganoderma lucidum 20435, G. lucidum 20432, Pleurotus ostreatus, and Daldinia concentrica were significantly inhibited or even stopped by the addition of PCP to the culture. However, Trametes versicolor, Phanerochaete chrysosporium, and Inonotus cuticularis still kept growing at 250ppm, indicating the potential utilization of wood rot fungi to high concentrated PCP biodegradation. Particularly, P. chrysosporium even showed very rapid growth rate at more than 500ppm of PCP concentration. Three selected fungi based on the above results showed an excellent biodegradability against PCP. P. chrysosporium degraded PCP up to 84% on the first day of incubation, and during 7 days, most of added PCP were degraded. T. versicolor also showed more than 90% of biodegradability at 7th day, and even though the initial stage of degradation was very slow, I. cuticularis has been approached to 90% at 21 st day after incubation with dense growing pattern of mycelia. Therefore, the PCP biodegradability was definitely dependent on the rapid suitability of fungi to newly PCP-added condition. In addition, the PCP biodegradation by filtrates of P. chrysosporium, T. versicolor, and I. cuticularis was very minimal or limited, suggesting that the extracellular enzyme system may be not so significantly related to the PCP biodegradation. Among the biodegradation metabolites of PCP, the most abundant one was pentachloroanisole which resulted in a little weaker toxicity than PCP, and others were tetrachlorophenol, tetrachloro-hydroquinone, benzoic acid, and salicylic acid, suggesting that PCP may be biodegraded by several sequential reactions such as methylation, radical-induced oxidation, dechlorination, and hydroxylation.

  • PDF

The Effects of Hydroxyl Radical Generation by Means of the Addition of $H_2O_2$ and $Fe^{3+}-EDTA$ in the Electron-beam Process (전자빔 공정에서 $H_2O_2$$Fe^{3+}-EDTA$의 첨가가 수산화라디칼 생성에 미치는 영향)

  • Kwon, Bumgun;Kwon, Joongkuen;Kim, Jongoh
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.10
    • /
    • pp.69-76
    • /
    • 2012
  • This study focuses both on the quantitative measurement of hydroxyl radicals formed by an electron beam (E-beam) process and on the decomposition of pentachlorophenol(PCP) in the presence of $H_2O_2$ and $Fe^{3+}-EDTA$ as additives. To attain this objective, the quantitative measurement of hydroxyl radical was performed with the hydroylation of benzoic acid (BA), producing hydroxybenzoic acid (OHBA). As a result, the concentrations of hydroxyl radical measured were lower than those of hydroxyl radical predicted. Probably, it indicates that the reactive species generated during E-beam irradiation are able to scavenge the hydroxyl radicals. In particular, the degradation of PCP was promoted by the addition of $H_2O_2$ (< 1mM). On the other hand, its degradation as well as the generation of chloride ions as a by-product was inhibited by the addition of $H_2O_2$ (> 1mM), and thus carbon yield(%) of oxalic acid as a by-product was increased. During E-beam irradiation the addition of $Fe^{3+}-EDTA$ effectively decomposed the PCP, thus increasing the G-values. Considering the formation of OHBA and the decomposition of PCP, these results suggest that the addition of $Fe^{3+}-EDTA$ in the E-beam process can produce the further hydroxyl radicals and enhance the efficiency of PCP decomposition at low dose.

Development of Microbial Augmentation for the Treatment of Recalcitrant Industrial Wastewater Containing Chlorinated Organic Compounds (유기염소계 난분해성 산업폐수의 처리를 위한 미생물제제의 개발)

  • Lee, Hyun Don;Im, Seong Won;Suh, Hyun-Hyo
    • Journal of Life Science
    • /
    • v.24 no.8
    • /
    • pp.887-894
    • /
    • 2014
  • The screening of the microorganisms degrading chlorinated organic compounds such as PCP (pentachlorophenol) and TCE (trichloroethylene) was conducted with soil and industrial wastewater contaminated with various chlorinated organic compounds. Isolates (GP5, GP19) capable of degrading PCP and isolates (GA6, GA15) capable of degrading TCE were identified as Acetobactor sp., Pseudomonas sp., Arthrobacer sp., Xanthomonas sp. and named Acetobacter sp. GP5, Pseudomonas sp. GP19, Arthrobacer sp. GA6 and Xanthomoas sp. GA15, respectively. The microbial augmentation, OC17 formulated with the mixture of bacteria including isolates (4 strains) degrading chlorinated organic compounds and isolates (Acinetobacter sp. KN11, Neisseria sp. GN13) degrading aromatic hydrocarbons. Characteristics of microbial augmentation OC-17 showed cell mass of $2.8{\times}10^9CFU/g$, bulk density of $0.299g/cm^3$ and water content of 26.8%. In the experiment with an artificial wastewater containing PCP (500 mg/l), degradation efficiency of the microbial augmentation OC17 was 87% during incubation of 65 hours. The degradation efficiency of TCE (300 uM) by microbial augmentation OC17 was 90% during incubation of 50 hours. In a continuous culture experiment, analysis of the biodegradation of organic compounds by microbial augmentation OC17 in industry wastewater containing chlorinated hydrocarbons showed that the removal rate of COD was 91% during incubation of 10 days. These results indicate that it is possible to apply the microbial augmentation OC17 to industrial wastewaters containing chlorinated organic compounds.

Application of a Microbial Toxicity Assay for Monitoring Treatment Efficiency of Pentachlorophenol in Water using UV Photolysis and $TiO_2$ Photocatalysis

  • Kim, Jung-Kon;Cho, Il-Hyung;Zoh, Kyung-Duk;Choi, Kyung-Ho
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2004.06a
    • /
    • pp.146-150
    • /
    • 2004
  • Degradation efficiency of pentachlorophenol (PCP) by using direct UV photolysis and $TiO_2$ photocatalysis was evaluated with both chemical analyses and acute toxicity assessment employing luminescent bacteria Vibrio fischeri. PCP was chosen as a target compound in this study because of its wide application as fungicide, bactericide, insecticide and wood preservative in agriculture and many industries, in addition to its well-known environmental consequences. The acute toxicity to the microbe was reduced by >60% when applying UV alone, and was completely removed when treated with $UV-TiO_2$ combinations. Toxicity reduction pattern determined with the Microtox Assay generally corresponds with the chemistry data: However, it should be noted that toxicity was greater than expected by the chemistry data. Formation of TCBQ, a toxic byprodut, could not explain observed microbial toxicity. These observations are probably due to the presence of unidentified toxic PCP byproducts, which may include polychlorinated dibenzodioxins and polychlorinated dibenzofurans. When Microtox results were compared between different exposure time, i.e.,5 min and 15 min, an interesting pattern was noted with $UVA-\;TiO_2$ treatment. While no microbial toxicity was observed with 5 min exposure, an EC50 value of 45.4% was estimated with 15 min exposure, which was not observed in $UVB-\;TiO_2$ exposure. This result may suggest the presence of unidentified toxic degradation products generated in the later stage of treatment. Based on this study, $TiO_2$ photocatalyst, together with UVB photolysis could improve the removal of both PCP and its toxic derivatives in more efficient way. The Microtox Assay is promising and economical method for monitoring efficiency of wastewater treatment processes.

  • PDF

Biological Treatment of Wastewater Containing Chlorinated Phenols by a Mixed Culture (복합미생물제재를 이용한 염소화 페놀계 폐수의 생물학적 처리)

  • 오희목;이완석;정상욱;박찬선;윤병대;김장억
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.2
    • /
    • pp.115-121
    • /
    • 2001
  • Biological Treatment of Wastewater Containing Chlorinated Phenols by a Mixed Culture. Lee, Wan-Seok1, Sang-Wook Jung, Chan-Sun Park, Byung-Dae Yoon, Jang-Eok Kim\ and Hee-Mock Oh*. Environmental Bioresources Laboratory, Korea Research Institute of Biosicence and Biotechnology, Taejon, Korea, 1 Department of Agricultural Chemistry, Kyungpool< National University, Taegu, Korea - The biodegradation of chlorinated phenols in an artificial wastewater was investigated using a mixed culture. The mixed culture was composed of 8 microorganisms isolated from the soil contaminated with various chlorinated phenols. Pseudomonas sp. BM as a main constituent of a mixed culture was Gram-negative, catalase- and oxidase-positive, and rod-shaped, and did not grow at 41°C. It degraded 99% of initial 500 mg!1 of pentachlorophenol (PCP) in the minimal salts medium as a sole source of carbon and energy within 3 days. The degradation efficiency of Pseu.domon.as sp. BM was not affected by the other organic carbon and nitrogen compounds. Pseudomonas sp. BM was able to grow in a broad range of pH 5 - 8, and degrade 2,000 mg/1 PCP. In the experiment with an artificial wastewater containing chlorinated phenols, the degradation efficiency of the mixed culture was the range of 73% (2,4-dichlorophenol) -96% (2-chlorophenol) during an incubation of 7 days. In a continuous culture experiment, the degradation efficiency of mixed culture plus activated sludge was about 2 times higher than that of the control containing only activated sludge. These results indicate that it is possible to apply the mixed culture to other wastewaters containing chlorinated phenols. Key words: Biodegradation, chlorinated phenols, pentachlorophenol, Pseudomonas sp. BM

  • PDF