• Title/Summary/Keyword: PCM(Phase change material)

Search Result 165, Processing Time 0.021 seconds

Cold Thermal Energy Storage Characteristics of Spherical PCM Capsule (상변화물질을 충진한 구형 캡슐의 축냉 특성)

  • Yun, Hong-Sun;Kwon, Jin-Kyung;Jeong, Hoon;Lee, Hyun-Dong;Kim, Young-Geon
    • Journal of Biosystems Engineering
    • /
    • v.33 no.5
    • /
    • pp.303-308
    • /
    • 2008
  • The freezing characteristics of two kinds of phase change materials (PCM) encapsulated in a spherical container were investigated with various cooling air temperatures and velocities. The super cooling and solidification time of PCM were highly affected by cooling air temperature and velocity. The experimental equations are derived to express total solidification time of the PCM in terms of Nusselt number and dimensionless temperature.

Experimental Study on Inward Melting of Phase Change Material in Inclined Circular Tube (경사진 원통형 용기내에서 상변화 물질의 내향 용융에 관한 실험적 연구)

  • Yim, Chang-Soon;Son, Ha-Jin
    • Solar Energy
    • /
    • v.12 no.1
    • /
    • pp.48-58
    • /
    • 1992
  • In the present investigation, experimental analysis was performed to research heat transfer phenomena generated by means of conduction and natural convection at a succession of tube-inclimations relative to the vertical tube during inward melting process of a phase change material. The phase change material used in the experiments is 99 percent pure n-docosane paraffin($C_{22}H_{46}$). When the tube is vertical, the dominant mode of energy transfer between the tube wall and the melting interface is natural convection. On the other hand, when the tube is inclined to the vertical, the melting solid is brought into direct contact with the tube wall by the action of gravity. In the experimental results, direct contact gave rise to substantial enhancements in the amount of melted mass, relative to those for natural-convection-dominated melting.

  • PDF

Study on the Characteristics of Thermal Output and Thermal Storage in a Thermally Activated Building System with Phase Change Material (PCM을 활용한 구체축열시스템의 축열 및 방열 특성 연구)

  • Lee, Hyunhwa;Lee, Soojin;Song, Jinhee;Kim, Sumin;Lim, Jaehan;Song, Seung-Yeong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.12
    • /
    • pp.647-653
    • /
    • 2013
  • TABS (Thermally Activated Building System) has recently applied by huge commercial buildings, airports, and convention centers in Europe. TABS provides night-time thermal storage by heating or cooling. The embedded water-based heating and cooling system uses the high thermal inertia of concrete in the building construction, in which a heating or cooling pipe is embedded. The aim of this study is to analyze the thermal storage and thermal output of TABS applied with PCM (Phase Change Material). To achieve this, prototypes of TABS and the thermal properties of various PCMs were investigated. By using the simulation program Physibel Voltra 6.0 W, the thermal storage and thermal output were evaluated according to a heating and cooling operation schedule.

Charateristics on the PCM absorbed porous media as thermal storage applicable for construction material (건자재활용을 위한 축열용 다공성 미립자 상변환 물질 흡착 특성)

  • Lee, Hyo-Jin
    • KIEAE Journal
    • /
    • v.17 no.3
    • /
    • pp.107-112
    • /
    • 2017
  • Purpose: Both silica gel and activated carbon black particles were adopted for use as PCM absorbed porous media applicable as construction materials. To investigate usable methods for absorbing PCM into the media, they were soaked into PCM and also tested for enhancement of PCM absorption into them. Method: To test PCM absorption into some porous media such as both ${\varphi}1{\sim}2mm$ and $10{\mu}m$ silica gels, and $50{\mu}m$ activated carbon black, $43^{\circ}C$ PCM was used as a laten heat material. The method, soaking into PCM was applied to this study, and the media were moderately rotated by centrifuge to have the extra PCM flow out. DSC analysis was conducted to investigate the melting and solidifying of the PCM absorbed into the porous media. Result: It was found that PCM was absorbed into the porous media by over 85 wt% of all particles. In addition, it was noted that the ultrasonic vibrator was accelerating the PCM absorption into the particles to three times higher speed than simple soaking. Centrifuge was adopted to remove extra PCM sticking on the particle surfaces and extra PCM was moderately removed from the surfaces of the particles. DSC analysis indicated that the latent heat of the absorbed PCM particles was 160 J/g, and the melting temperature was approximately $40^{\circ}C{\sim}50^{\circ}C$.

A Study on the Reduction of Temperature Damage in Concrete Pavement (콘크리트 포장에서 발생하는 온도피해 저감에 관한 연구)

  • Jae-Don Kim;Il-Young Jang
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.2
    • /
    • pp.305-312
    • /
    • 2023
  • Purpose: Although the damage caused by abnormal temperatures is extensive, blow-up or black ice is typical in concrete structures. In this study, PCM with high phase change energy was mixed with concrete to reduce temperature damage to concrete pavement. Method: In order to reduce temperature damage to low temperatures and high temperatures, capsule-type PCM with phase change temperatures of 4.5℃ and 44℃ was replaced by 10%, 30%, and 50%, and thermal performance experiments and compressive strength experiments were conducted using thermocouples and variable chambers. Result: As a result of the thermal performance experiment, it was found that the incorporation of PCM improves temperature resistance by up to 25% or more, and increases thermal resistance at all temperatures with high specific heat when substituted in large amounts. As a result of the compression strength experiment, a substitution of 30% or more resulted in a decrease in the compression strength, and a large strength difference was shown based on the phase change temperature of the PCM. Conclusion: The incorporation of PCMs has been shown to increase the thermal performance of concrete, with the greatest increase in thermal performance near the phase change temperature of PCM. In addition, a small strength reduction of 10% to 20% occurs at the highest substitution rate of 50% substitution, so there is no significant problem with usability, and additional PCM substitution is expected to improve thermal performance.

Clothing Temperature Changes of Phase Change Material-Treated Warm-up in Cold and Warm Environments

  • Choi Kyeyoun;Chung Hyejin;Lee Boram;Chung Kyunghee;Cho Gilsoo;Park Mikyung;Kim Yonkyu;Watanuki Shigeki
    • Fibers and Polymers
    • /
    • v.6 no.4
    • /
    • pp.343-347
    • /
    • 2005
  • The purpose of this study was to investigate the appropriate amounts of phase change materials to give objective and subjective wear sensations. Vapor-permeable water-repellent fabrics with (WR-PCM) and without (WR) octadecane containing microcapsules were obtained by wet-porous coating process. Then, calculating the area of the WR-PCM treated clothes, we estimated the total calories of the clothing by multiplying the heat of fusion and heat of crystallization of PCM to the calculated area. Wear tests were conducted in both warm environment $(30^{\circ}C,\;65\%\;RH)$ and cold environment $(5^{\circ}C,\;65\%\;RH)$ with sports warm up style experimental garments made with WR and WR-PCM fabrics. Rectal, skin, and clothing microclimate temperatures, saliva and subjective evaluation measurements were done during the wear test. There was no difference of rectal and mean skin temperatures between WR and WR-PCM, but the clothing microclimate temperature of WR-PCM under warm environment was slightly lower than that of WR. In cold environment, WR-PCM showed much higher temperature than in WR. Saliva change did not appear between clothes, but did between two environments. Although subjective sensation between WR and WR-PCM was not significantly different, WR-PCM was rated as cooler than WR in warm environment and as warmer than WR in cold environment. The results of this study indicated that octadecane containing microcapsules in water-repellent fabric provide cooling effect.

A Study of the Phase Change Material for Reducing Hydration Heat of Mass Concrete (상변화 물질을 이용한 저발열 콘크리트 개발에 관한 연구)

  • Shon, Myung-Soo;Lee, Wan-Jo;Chung, Yun-Joong;Kim, Jin-Keun;Hwang, In-Dong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.697-700
    • /
    • 2006
  • The unique technology was developed to control the hydration heat of mass concrete by adding the Phase Change Material(PCM) to concrete. The PCM was designed to liquefy at 60 degrees and its size was limited under $10{\sim}30$ micro meters to be put in pores and to have no effect on compressive strength. In the hydration heat test, center temperature of the PCM specimen was reduced by 10 degrees without any difference in the strength. Even in the adiabatic temperature rise test, the final adiabatic temperature rise amount was reduced as much as 25% in comparison with the standard value in Korean Concrete Standard Specification.

  • PDF

The Development of a PCM Cold Storage Refrigerator using Forced Convection Method (강제대류방식 PCM 축냉장고 개발)

  • Lee, Sang-Ryoul;Ryu, In-Keun;Kim, Jin-Hong;Jun, Young-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.517-522
    • /
    • 2005
  • A cold storage refrigerator using phase change material(PCM) has been developed and its performance test results are provided here. The inner temperature of the refrigerator is controlled with forced convection driven by a fan using a DC battery. At the first, to freeze all the PCM of the ambient temperature by a built-in refrigerating machine, it took about 8 and 10 hours respectively at the refrigerator and the freezer mode. Then, without external power supply, the inner temperature of the cold storage refrigerator has been maintained at $-18{\pm}1^{\circ}C$ during 14 hours at the freezer mode and maintained at $3{\pm}^{\circ}C$ during 34 hours at the refrigerator mode. Just after the end of its valid usage as a refrigerator or a freezer, it took about 6 hours to refreeze the PCM for its reuse. During the test, the ambient temperature was kept at $30^{\circ}C$.

  • PDF

Evaluation of Hydration Heat of Mass Concrete with Capsulated Slurry PCM and FEM Study for Analyzing Thermal Crack (캡슐형 슬러리 PCM을 혼입한 매스콘크리트의 수화열 평가 및 온도균열 FEM 해석에 관한 연구)

  • Park, ChangGun;Kim, Bo-Hyun;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.5
    • /
    • pp.379-388
    • /
    • 2014
  • The purpose of this study is to investigate the effect of capsulated slurry phase change material (PCM) on the thermal crack in mass concrete by experimental work and FEM analysis. In this study, three conditions of samples were prepared for evaluating the level of hydration heat, i.e., a material condition, a cement paste condition and a concrete condition. Also, a compressive strength test was conducted for FEM inverse analysis. Based on the results of the experiment, exothermic function coefficients of concrete with encapsulated slurry PCM were deducted by the inverse analysis. After that, they applied to FEM analysis of the mass scale concrete structures. From the results of this experiment, $31^{\circ}C$ capsulated slurry PCM had no super cooling phenomenon in the material condition. In the cement condition, hydration heat decreased by 34.61J when PCM of 1g was mixed. In the concrete condition, PCM of 6% was deducted as the best level in hydration heat absorption. In FEM inverse analysis, rate coefficient of reaction gradually decreased when PCM mixing ratio increased. But, temperature-rise coefficient increased when PCM mixing ratio exceeded 6%. For the inversed exothermic function coefficients applying to large scale concrete structures, a thermal cracking index increased by 0.05 when PCM of 1% was mixed.

Hydration Heat and Strength Characteristics of Cement Mortar with Phase Change Materials(PCMs) (상전이물질을 혼입한 시멘트 모르타르의 수화발열 및 강도 특성 평가)

  • Jang, Seok-Joon;Kim, Byung-Seon;Kim, Sun-Woong;Park, Wan-Shin;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.6
    • /
    • pp.665-672
    • /
    • 2016
  • This study is conducted to investigate the effect of phase change materials (PCM) on hydration heat and strength characteristics of cement mortar. Two types of Barium and Strontium-based PCMs were used in this study and the addition ratio of each PCM to the cement mortar ranged from 1% to 5% by cement weight. Flow test, semi-adiabatic temperature rise test, compressive strength and flexural strength test were carried out to examine the PCM effect on heat and mechanical properties of cement mortar. Test results indicated that PCMs used in this study were effective to control hydration heat of cement mortar, and Barium-based PCM slightly reduce flow value. The compressive and flexural strength of cement mortar with PCM decreased with increasing the adding mount of PCM. The prediction model for compressive strength of cement mortar with different addition levels of PCMs are suggested in this study.