• Title/Summary/Keyword: PCE 환원성 탈염소화 생분해

Search Result 2, Processing Time 0.024 seconds

Evaluation of Microbial PCE Reductive Dechlorination Activity and Microbial Community Structure using PCE-Contaminated Groundwater in Korea (사염화에틸렌(PCE)으로 오염된 국내 4개 지역 지하수 내 생물학적 PCE 탈염소화 활성 및 미생물 군집의 비교)

  • Kim Young;Kim Jin-Wook;Ha Chul-Yoon;Kwon Soo-Yeol;Kim Jung-Kwan;Lee Han-Woong;Ha Joon-Soo;Park Hoo-Won;Ahn Young-Ho;Lee Jin-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.2
    • /
    • pp.52-58
    • /
    • 2005
  • In Korea, little attention has been paid to microbial perchloroethylene (PCE) and/or trichloroethylene (TCE) dechlorination activity and identification of microorganisms involved in PCE reductive dechlorination at a PCE-contaminated aquifer. We performed microcosm tests using the groundwater samples from 4 different contaminated sites (i.e. Changwon A, Changwon B, Bucheon and Yangsan) to assess PCE reductive dechlorination activity. We also adapted molecular techniques to screen what types of known reductive dechlorinators are present at the PCE-contaminated aquifers. In the Changwon A and Changwon B active microcosms where potential electron donors such as sodium propionate, sodium lactate, sodium butyrate, and sodium fumarate, were added, ethylene, an end-product of complete reductive dechlorination of PCE, was detected after a period of 90 days of incubation. In the Bucheon and Yangsan active microcosms, cis-1,2-dichloroethylene (c-DCE) was accumulated without the production of vinyl chloride (VC) and ethylene. Molecular techniques were used to evaluate the microbial community structures in the Changwon B and Yangsan aquifer. We found two sequence types that were closely related to a known PCE to ethylene dechlorinator, named uncultured bacterium clone DCE47, in the Changwon B site clone library. However, in the Yangsan site clone library, no sequence type was closely related to known PCE dechlorinators reported. It is plausible that microorganisms being capable of completely dechlorinating PCE to ethylene may be present in the Changwon B site aquifer. In this study we find that complete PCE reductive dechlorinators are present at some PCE-contaminated sites in Korea. In an engineering point of view this information makes it feasible to apply a biological reductive dechlorination process for remediating PCE- and/or TCE-contaminated aquifers in Korea.

반연속 흐름 2단 토양 컬럼에서의 사염화 에틸렌(PCE)의 혐기성 완전탈염소화 환원 생분해

  • Choi Jeong-Dong;Kim Yeong;Gwon Su-Yeol;Park Hu-Won;An Yeong-Ho
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.131-134
    • /
    • 2005
  • Anaerobic reductive dechlorination of tetrachloroethylene(PCE) to ethylene was investigated by performing laboratory experiments using semi-continuous flow two-in-series soil columns. The columns were packed with soils obtained from TCE-contaminated site in Korea. Site ground water containing lactate(as electron donor and/or carbon source) and PCE was pumped into the soil columns. During the first operation with a period of 50 days, injected mass ratio of lactate and PCE was 620:1 and incomplete reductive dechlorination of PCE to cis-DCE was observed in the columns. However, complete dechlorination of PCE to ethylene was observed when the mass ratio increased to 5,050:1 in the second operation, suggesting that the electron donor might be limited during the first operation period. During the degradation of cis-DCE to ethylene, the concentration of hydrogen was $22{\sim}29mM$. These positive results indicate that the TCE-contaminated groundwater investigated in this study could be remediated through biological anaerobic reductive dechlorination processes.

  • PDF