Purpose - The essential purpose of this study is to analyze the possibility of substitution of an individual job resulting from technological development represented by the 4th Industrial Resolution, considering the different effects of digital transformation on the labor market. Design/methodology - In order to estimate the substitution probability, this study used two data sets which the job characteristics data for individual occupations provided by KEIS and the information on occupational status of substitution provided by Frey and Osborne(2013). In total, 665 occupations were considered in this study. Of these, 80 occupations had data with labels of substitution status. The primary goal of estimation was to predict the degree of substitution for 607 of 665 occupations (excluding 58 with markers). It utilized three methods a principal component analysis, an unsupervised learning methodology of machine learning, and Ridge and Lasso from supervised learning methodology. After extracting significant variables based on the three methods, this study carried out logistics regression to estimate the probability of substitution for each occupation. Findings - The probability of substitution for other occupational groups did not significantly vary across individual models, and the rank order of the probabilities across occupational groups were similar across models. The mean of three methods of substitution probability was analyzed to be 45.3%. The highest value was obtained using the PCA method, and the lowest value was derived from the LASSO method. The average substitution probability of the trading industry was 45.1%, very similar to the overall average. Originality/value - This study has a significance in that it estimates the job substitution probability using various machine learning methods. The results of substitution probability estimation were compared by industry sector. In addition, This study attempts to compare between trade business and industry sector.
The feature map used in the network for deep learning generally has larger data than the image and a higher compression rate than the image compression rate is required to transmit the feature map. This paper proposes a method for transmitting a pyramid feature map with high compression rate, which is used in a network with an FPN structure that has robustness to object size in deep learning-based image processing. In order to efficiently compress the pyramid feature map, this paper proposes a structure that predicts a pyramid feature map of a level that is not transmitted with pyramid feature map of some levels that transmitted through the proposed prediction network to efficiently compress the pyramid feature map and restores compression damage through the proposed reconstruction network. Suggested mAP, the performance of object detection for the COCO data set 2017 Train images of the proposed method, showed a performance improvement of 31.25% in BD-rate compared to the result of compressing the feature map through VTM12.0 in the rate-precision graph, and compared to the method of performing compression through PCA and DeepCABAC, the BD-rate improved by 57.79%.
Ah Lam Lee;Xin Cui;Hayoung Jung;Hee Eun Kim;Eun Jin Jeon;Hyungjin Na;Eunmi Kim;Heecheon You
Safety and Health at Work
/
v.15
no.1
/
pp.42-52
/
2024
Background: The lack of headforms that accurately reflect the head characteristics of Koreans and the demographic composition of the Korean population can lead to inadequate FFR testing and reduced effectiveness of FFRs. Method: Direct measurements of 5,110 individuals and 3D measurements of 2,044 individuals, aged between 9 and 69 years, were sampled from the data pool of Size Korea surveys based on the age and gender ratios of the Korean resident demographics. Seven head dimensions were selected based on the ISO 16976-2, availability of Size Korea measurements, and their relevance to the fit performance of FFRs. A principal component analysis (PCA) was performed using the direct measurements to extract the main factors explaining the head characteristics and then the main factors were standardized and remapped to 3D measurements, creating five size categories representing Korean head shapes. Lastly, representative 3D headforms were constructed by averaging five head shapes for each size category. Results: The study identified two main factors explaining Korean head characteristics by the PCA procedure specified in ISO 16976-2 and developed five representative headforms reflecting the anthropometric features of Korean heads: medium, small, large, short & wide, and long & narrow. Conclusion: This study developed representative headforms tailored to the Korean population for conducting total inward leakage (TIL) tests on filtering facepiece respirators (FFRs). The representative headforms can be used for TIL testing by employing robotic headforms to enhance the performance of FFRs for the Korean target population.
Currently serious conflicts of interests are arisen for the use of coastal area in Korea. However, there no mediation program, mediators' consistent policies and reasonable laws to resolve conflict of interests which may be arisen when developing coastal area. The objective of this study is to lay the evaluation criteria for the formalized objective evaluation among disputants of coastal conflicts for the better understanding and characterizing of coastal conflicts in Korea. In order to do so, this study has adopted for the extraction of the evaluation factors to describe the present conditions of conflicts in the selected study area(Sihwa lake), to analyze the problems, and then to explore alternative approaches for resolving the conflicts. As research methodologies, we have depended upon literature review and field survey methods. As field survey methods, we employed structured questionnaires for the various samples from the experts of research institutes, professors, representatives of NGOs and citizens. Survey results suggested that 5 representative elements comprising 35 detailed elements could be identified. Based on these results, this study was able to identify and classify the evaluation factors and help to resolve coastal conflicts in Korea.
본 논문은 조명 변화, 표정 변화, 부분적인 오클루전이 있는 얼굴 영상에 강인하고 적은 메모리양과 계산량을 갖는 효율적인 얼굴 인식 방법을 제안한다. SKKUface(Sungkyunkwan University face)라 명명한 이 방법은 먼저 훈련 영상에 PCA(principal component analysis)를 적용하여 차원을 줄일 때 구해지는 특징 벡터 공간에서 조명 변화, 얼굴 표정 변화 등에 해당되는 공간이 최대한 제외된 새로운 특징 벡터 공간을 생성한다. 이러한 특징 벡터 공간은 얼굴의 고유특징만을 주로 포함하는 벡터 공간이므로 이러한 벡터 공간에 Fisher linear discriminant를 적용하면 클래스간의 더욱 효과적인 분리가 이루어져 인식률을 획기적으로 향상시킨다. 또한, SKKUface 방법은 클래스간 분산(between-class covariance) 행렬과 클래스내 분산(within-class covariance) 행렬을 계산할 때 문제가 되는 메모리양과 계산 시간을 획기적으로 줄이는 방법을 제안하여 적용하였다. 제안된 SKKUface 방법의 얼굴 인식 성능을 평가하기 위하여 YALE, SKKU, ORL(Olivetti Research Laboratory) 얼굴 데이타베이스를 가지고 기존의 얼굴 인식 방법으로 널리 알려진 Eigenface 방법, Fisherface 방법과 함께 인식률을 비교 평가하였다. 실험 결과, 제안된 SKKUface 방법이 조명 변화, 부분적인 오클루전이 있는 얼굴 영상에 대해서 Eigenface 방법과 Fisherface 방법에 비해 인식률이 상당히 우수함을 알 수 있었다.
Two functional modified-butterfats (MF668 and MF866) were synthesized with two blends (6:6:8 and 8:6:6, w/w%) of anhydrous butterfat (ABF), palm stearin (PS) and flaxseed oil (FSO, omega-3) via lipase-catalyzed interesterification reaction. Their flavor characteristic was investigated using electronic nose and SPME-GC/MS analysis. Each flavor pattern of ABF, FSO, MF668 and MF866 was significantly discriminated with first principal component score of 95.16% in PCA plot. In functional modified-butterfats analyzed with SPME-GC/MS, various volatile compounds such as aldehydes, ketones, acids, and alkanes were detected.
Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
/
1997.04a
/
pp.99-102
/
1997
An electronic nose system is an instrument designed far mimicking human olfactory system. It consists generally of gas (odor) sensor array corresponding to olfactory receptors of human nose and artificial neural network pattern recognition technique based on human biological odor sensing mechanism. Considerable attempts to develop the electronic nose system have been made far applications in the fields of floods, drinks, cosmetics, environment monitoring, etc. A portable electronic nose system has been fabricated by using oxide semiconductor gas sensor array and pattern recognition technique such as principal component analysis (PCA) and back propagation artificial neural network The sensor array consists of six thick film gas sensors whose sensing layers are Pd-doped WO$_3$ Pt-doped SnO$_2$ TiO$_2$-Sb$_2$O$_3$-Pd-doped SnO$_2$ TiO$_2$-Sb$_2$O$_{5}$-Pd-doped SnO$_2$+Pd filter layer, A1$_2$O$_3$-doped ZnO and PdCl$_2$-doped SnO$_2$. As an application the system has been used to identify CO/HC car exhausting gases and the identification has been successfully demonstrated.d.
Nawaz, Javeria Muhammad;Arshad, Muhammad Zeeshan;Hong, Sang Jeen
JSTS:Journal of Semiconductor Technology and Science
/
v.14
no.2
/
pp.252-261
/
2014
A Bayesian network (BN) based fault diagnosis framework for semiconductor etching equipment is presented. Suggested framework contains data preprocessing, data synchronization, time series modeling, and BN inference, and the established BNs show the cause and effect relationship in the equipment module level. Statistically significant state variable identification (SVID) data of etch equipment are preselected using principal component analysis (PCA) and derivative dynamic time warping (DDTW) is employed for data synchronization. Elman's recurrent neural networks (ERNNs) for individual SVID parameters are constructed, and the predicted errors of ERNNs are then used for assigning prior conditional probability in BN inference of the fault diagnosis. For the demonstration of the proposed methodology, 300 mm etch equipment model is reconstructed in subsystem levels, and several fault diagnosis scenarios are considered. BNs for the equipment fault diagnosis consists of three layers of nodes, such as root cause (RC), module (M), and data parameter (DP), and the constructed BN illustrates how the observed fault is related with possible root causes. Four out of five different types of fault scenarios are successfully diagnosed with the proposed inference methodology.
Headspace solid phase trapping solvent extraction (HS-SPTE) and GC-MS was applied for the characterization of volatile flavors from fennel, anise seed, star-anise, dill seed, fennel bean, and Ricard aperitif liquor. Tenax was used for HS-SPTE adsorption material. Recoveries, precision, linear dynamic ranges, and the limit of detection in the analytical method were validated. There were some similarities and distinct differences between fennel-like samples. The Korean and the Chinese fennels contained trans-anethole, (+)-limonene, anisealdehyde, methyl chavicol as major components. The volatile aroma components from star anise were characterised by rich trans-anethole, (+)-limonene, methyl chavicol, and anisaldehyde. Additionally, principal component analysis (PCA) has been used for characterizing or classifying eight different fennel-like samples according to origin or other features. A quite different pattern of dill seed was found due to the presence of apiol (dill).
Park Chang-Hyun;Kim Ho-Duck;Yang Hyun-Chang;Sim Kwee-Bo
Journal of the Korean Institute of Intelligent Systems
/
v.16
no.4
/
pp.466-471
/
2006
IAn important problem of pattern recognition is to extract or select feature set, which is included in the pre-processing stage. In order to extract feature set, Principal component analysis has been usually used and SFS(Sequential Forward Selection) and SBS(Sequential Backward Selection) have been used as a feature selection method. This paper applies genetic algorithm which is a popular method for nonlinear optimization problem to the feature selection problem. So, we call it Genetic Algorithm Feature Selection(GAFS) and this algorithm is compared to other methods in the performance aspect.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.