In order to confirm the safety of a genetically modified organism (GMO), we assess its potential toxicity on non-target insects and spiders. In this study, the effects of GM soybean, a type of vitamin-A-enhanced transgenic soybean with tolerance to the herbicide glufosinate, were assessed under a field condition. The study compared this vitamin-A-enhanced transgenic soybean and a non-GM soybean (Gwangan) in a living modified organism (LMO) isolated field of Kyungpook National University (Gunwi) and the National Institute Agricultural Sciences (Jeonju) in the Republic of Korea in 2019 - 2020. In total, 207,760 individual insects and arachnids, representing 81 families and 13 orders, were collected during the study. From the two types of soybean fields, corresponding totals of 105,765 and 101,995 individuals from the vitamin-A-enhanced transgenic soybean and Gwangan samples areas were collected. An analysis of variance indicated no significant differences (p < 0.05). A multivariate analysis showed that the dominance and richness outcomes of plant-dwelling insects were similar. The data on insect species population densities were subjected to a principal component analysis (PCA) and an orthogonal partial least squares-discriminant analysis (OPLS-DA), which did not distinguish between the two varieties, i.e., the vitamin-A-enhanced transgenic soybean and the non-GM soybean in any cultivated field. However, the results of the PCA analysis could be divided overall into four groups based on the yearly survey areas. Therefore, there was no evidence for the different impact of vitamin A-enhanced transgenic soybean on the above-ground insects and spiders compared to non-GM soybean.
Park, Jin-Woong;Kang, Sun-Kyung;Kim, Young-Un;Jung, Sung-Tae
Journal of the Korea Society of Computer and Information
/
v.18
no.4
/
pp.45-55
/
2013
In this study, we propose a tongue diagnosis system which detects the tongue from face image and divides the tongue area into six areas, and finally generates tongue fur ratio of each area. To detect the tongue area from face image, we use ASM as one of the active shape models. Detected tongue area is divided into six areas and the distribution of tongue coating of six areas is examined by SVM. For SVM, we use a 3-dimensional vector calculated by PCA from a 12-dimensional vector consisting of RGB, HSV, Lab, and Luv. As a result, we stably detected the tongue area using ASM. Furthermore, we recognized that PCA and SVM helped to raise the ratio of tongue coating detection.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.42
no.1
/
pp.17-23
/
2005
In this paper, we propose face recognition method using embedded data in super states segmentalized that is specification region exist to face region, hair, forehead, eyes, ears, nose, mouth, and chin. Proposed method defines super states that is specification area in normalized size (92×112), and embedded data that is extract internal factor in super states segmentalized achieve face recognition by PCA algorithm. Proposed method can receive specification data that is less in proposed image's size (92×112) because do orignal image to learn embedded data not to do all loaming. And Showed face recognition rate in image of 92×112 size averagely 99.05%, step 1 99.05%, step 2 98.93%, step 3 98.54%, step 4 97.85%. Therefore, method that is proposed through an experiment showed that the processing speed improves as well as reduce existing face image's information.
Structural MRI(sMRI) imaging is used to extract morphometric features after Grey Matter (GM), White Matter (WM) for several univariate and multivariate method, and Cerebro-spinal Fluid (CSF) segmentation. A new approach is applied for the diagnosis of very mild to mild AD. We propose the classification method of Alzheimer disease patients from normal controls by combining morphometric features and Gaussian Mixture Models parameters along with MMSE (Mini Mental State Examination) score. The combined features are fed into Multi-kernel SVM classifier after getting rid of curse of dimensionality using principal component analysis. The experimenral results of the proposed diagnosis method yield up to 96% stratification accuracy with Multi-kernel SVM along with high sensitivity and specificity above 90%.
Objectives: Pine needles were used as a passive air sampler (PAS) of atmospheric persistent organic pollutants (POPs). This study was performed to investigate concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) deposited on pine needles near a waste incinerator and PCDD/Fs source contributions using principal component analysis (PCA). Methods: Two-year-old pine needles were sampled at 11 points with respect to distance and wind direction from the incinerator. PCDD/Fs deposited on pine needles were analyzed with HRGC/HRMS. The source contribution of PCA was calculated with SPSS. Results: The average concentration of PCDD/Fs deposited on pine needle was 0.79 (0.27-1.76) pg TEQ/g dry, PCDDs with 0.24 (0.01-0.95) pg TEQ/g dry and PCDFs with 0.56 (0.27-0.82) pg TEQ/g dry, respectively. The average concentration fraction of PCDDs was 29.7%, that of PCDFs was 70.3%, and PCDFs were more prevalent than PCDDs. The contributions of PCDD/Fs sources were estimated as incineration at 58.3% and automobiles at 28.4%. However, a relation and regulation between PCDD/Fs concentrations deposited on pine needles and distance from incinerator or wind direction was not shown. Conclusion: It was concluded that atmospheric PCDD/Fs concentrations near an industrial complex with a waste incinerator were affected by multiple sources. However, PCDD/Fs concentrations were lower than in other inland cities with the exception of background area.
Journal of the Institute of Electronics and Information Engineers
/
v.50
no.8
/
pp.232-237
/
2013
A newly developed fall detection algorithm using the HMM (Hidden Markov Model) extracted from the video is introduced. To distinguish between the fall from personal difference fall pattern or the normal activities of daily living (ADL), HMM machine learning algorithm is used. For getting fall feature vector of video, the motion vector from the optical flow is applied to the PCA (Principal Component Analysis). The combination of the angle, ratio of long-short axis, velocity from results of PCA make the new fall feature parameters. These parameters were applied to the HMM and the results were compared and analyzed. Among the newly proposed various kinds of fall parameters, the angle of movement showed the best results. The results show that this parameter can distinguish various types of fall from ADLs with 91.5% sensitivity and 88.01% specificity.
Journal of the Korean Institute of Intelligent Systems
/
v.25
no.5
/
pp.425-430
/
2015
This paper is a study to improve the classification efficiency of rotating objects by using deep neural networks to which a deep learning algorithm was applied. For the classification experiment of rotating objects, COIL-20 is used as data and total 3 types of classifiers are compared and analyzed. 3 types of classifiers used in the study include PCA classifier to derive a feature value while reducing the dimension of data by using Principal Component Analysis and classify by using euclidean distance, MLP classifier of the way of reducing the error energy by using error back-propagation algorithm and finally, deep learning applied DBN classifier of the way of increasing the probability of observing learning data through pre-training and reducing the error energy through fine-tuning. In order to identify the structure-specific error rate of the deep neural networks, the experiment is carried out while changing the number of hidden layers and number of hidden neurons. The classifier using DBN showed the lowest error rate. Its structure of deep neural networks with 2 hidden layers showed a high recognition rate by moving parameters to a location helpful for recognition.
The quality of Korean doenjang, which was traditionally made for this study, was monitored for physicochemical properties, antioxidant capacity, and sensory properties at six months intervals for three years. The collected data were comprehensively analyzed using the k-means clustering via principal component analysis (PCA) to determine the optimal intake duration and sensory factors associated with acceptance. Doenjang samples were classified with every year interval based on PCA, and then the classified doenjang samples were further grouped into cluster one, two, and three based on the k-means clustering. In Cluster three, doenjang that was aged for thirty and thirty-six months, respectively, showed high total phenolic content, antioxidant capacity, superoxide dismutase like activity, and 2,2-diphenyl-1-picryl-hydrazyl radical scavenging capacity. Interestingly, along with acceptance, the levels of free amino acids and organic acids were higher in Cluster 3. The sensory factors found to be associated with acceptance included umami taste and brown color. In conclusion, this study proposes the intake of doenjang aged for thirty months based on its antioxidant activity and sensory properties although doenjang is usually ready after twelve months of aging.
Objective: This work was carried out to evaluate the effect of pasture (PA) feeding on buffalo meat quality compared with buffaloes reared intensively with the use of corn silage as a forage base or alternatively with polyphite meadow hay (PH). Methods: Thirty Mediterranean bull buffaloes were distributed into three experimental diet groups: maize silage (MS), PH, and PA. The animals were slaughtered at a live weight of 250 kg, and carcass and meat quality were evaluated. After 7 days of ageing, physical and chemical parameters of longissimus thoracis muscle were determined. To evaluate lipid oxidation the thiobarbituric acid reactive substances was tested at 7 and 14 days, and also the fatty acid profile was recorded by gas chromatography. Results: The PA group, even if it showed carcass parameters lower than those of the silage maize group, reported a good meat percentage (60.59% vs 58.46%, respectively) and lower fat percentage (p<0.001). PA-fed animals showed meat redness, and even if only on raw meat, shear force was higher than the others. Low values of conjugate linoleic acid, polyunsaturated fatty acids, and n-3 were reported in the silage maize group. Principal component analysis (PCA) clearly showed the influence of different diets on meat quality, and PCA1 and PCA2 explained 82% of the variability. Conclusion: Buffaloes reared on PA had meat with high nutritional value even if they showed poor carcass performance compared to the animals fed on MS. Buffaloes fed on polyphite hay were in an intermediate position, similar to grazing animals, according to the same nutritional determinations.
Traditional Korean medicines may be managed more scientifically, through the development of logical criterion to verify their cultivation region. It contributes to advance the industry of traditional herbal medicines. Volatile compounds were obtained from 14 samples of domestic Taeksa and 30 samples of Chinese Taeksa by steam distillation. The metabolites were identified by NIST mass spectral library in the obtained gas chromatography/mass spectrometer (GC/MS) data of 35 training samples. The multivariate statistical analysis, such as Principal Component Analysis (PCA), Partial Least Squares Discriminant Analysis (PLS-DA), and Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA), were performed based on the qualitative and quantitative data. Finally trans-(2,3-diphenylcyclopropyl)methyl phenyl sulfoxide (47.265 min), 1,2,3,4-tetrahydro-1-phenyl-naphthalene (47.781 min), spiro[4-oxatricyclo[5.3.0.0.(2,6)]decan-3-one-5,2'-cyclohexane] (54.62 min), 6-[7-nitrobenzofurazan-4-yl]amino-morphinan-4,5-epoxy (54.86 min), p-hydroxynorephedrine (55.14 min) were determined as marker metabolites to verify candidates for the origin of Taeksa. The statistical model was well established to determine the origin of Taeksa. The cultivation areas of test samples, each 3 domestic and 6 Chinese Taeksa were predicted by the established OPLS-DA model and it was confirmed that all 9 samples were precisely classified.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.