• 제목/요약/키워드: PCA(Principal Component Analysis

Search Result 1,243, Processing Time 0.041 seconds

Generic Cube based on Feature Vectors (특징벡터를 기준으로 한 본원적 큐브)

  • Baek, Jong-Tae;Lee, Woo-Key;Lee, Hwa-Ki
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06d
    • /
    • pp.214-215
    • /
    • 2012
  • 본원적 큐브란 사용자의 얼굴을 다각면에서 추출하여 주성분분석(PCA: Principal component analysis)을 통해 다차원 정보를 통합하여 큐브형태로 표현된 것을 의미한다. 두 눈의 연결점과 입의 연결점을 이은 후 그 둘의 법선벡터를 얼굴의 방향으로 표현하는 것으로써 평면 사진에 얼굴방향을 부여한다. 그럴 경우 동일인물의 다양한 사진들을 모았을 경우 각 사진들이 얼굴방향을 달리하는 사진큐브로 표현될 수 있다. 이로써 기존에는 얼굴방향이 다른 동일인물의 사진을 정확하게 구분해 낼 수 없던 한계를 뛰어넘을 수 있다. 또한 큐브는 방향이 조금씩 다른 모든 사진을 저장할 필요가 없으므로 저장공간이 크게 절감되는 장점이 있다. 또한 단체 사진에서 개인의 이미지를 추출한 뒤 본 연구의 큐브와 매칭시켜 인물을 탐색하거나 소유한 이미지를 공유하는 기법을 포함한다. 결과적으로 큐브를 활용하여 효과적으로 인물탐색이 가능 해지는 것이다.

Fault Diagnosis of Induction Motor Using Clustering and Principal Component Analysis (클러스터링과 주성분 분석기법을 이용한 유도전동기 고장진단)

  • Park Chan-Won;Lee Dae-Jong;Park Sung-Moo;Chun Myung-Geun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.208-211
    • /
    • 2006
  • 본 논문에서는 3상 유도전동기의 고장진단을 수행하기 위해 패턴인식에 기반을 둔 진단 알고리즘을 제안한다. 실험 장치는 유도전동기 구동의 고장신호를 얻기 위하여 구축하였으며, 취득된 데이터를 이용하여 진단 알고리즘을 구축하였다. 취득된 데이터 중에서 진단을 위해 사용될 훈련데이터는 퍼지 기반 클러스터링 기법을 이용하여 신뢰성 높은 데이터를 선택하여 고장별 신호를 추출하였다. 진단 알고리즘으로는 데이터를 주성분 분석기법을 적용하였으며, 최종 분류를 위해 Euclidean 기반 거리척도 기법을 이용하였다. 다양한 부하 및 고장신호에 대하여 제안된 방법을 적용하여 타당성을 검증하였다.

  • PDF

Fuzzy system construction based on Genetic Algorithms and fuzzy clustering

  • Kwak, Keun-Chang;Kim, Seoung-Suk;Ryu, Jeong-Woong;Chun, Myung-Geun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.109.6-109
    • /
    • 2002
  • In this paper, the scheme of fuzzy system construction using GA(genetic algorithm) and FCM(Fuzzy c-means) clustering algorithm is proposed for TSK(Takagi-Sugeno-Kang) type fuzzy system. in the structure identification, input data is trans-formed by PCA(Principal Component Analysis) to reduce the correlation among input data components. And then, the number of fuzzy rule is obtained by a given performance criterion. In the parameter identification, the premise parameters are optimally searched by GA. On the other hand, the consequent parameters are estimated by RLSE(Recursive Least Square Estimate) to reduce the search space. From this, one can systematically obtain optimal parameter and the v..

  • PDF

A Statistical Approach for Recognizing Emotion from Dance Sequence

  • Park, Han-Hoon;Park, Jong-Il;Kim, Un-Mi;Woontack Woo
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1161-1164
    • /
    • 2002
  • We propose a simple method that can recognize human emotion from monocular dance image sequences. The method only exploits the information within image sequences and does not require cumbersome attachments like sensors. This makes the method a simple, human-friendly one. Moreover, the method is more robust and efficient by taking into account the statistical property of image sequences based on PCA (Principal Component Analysis). The correct recognition rate in real-time is about 75% in a variety of experiments.

  • PDF

An Input Feature Selection Method Applied to Fuzzy Neural Networks for Signal Estimation

  • Na, Man-Gyun;Sim, Young-Rok
    • Nuclear Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.457-467
    • /
    • 2001
  • It is well known that the performance of a fuzzy neural network strongly depends on the input features selected for its training. In its applications to sensor signal estimation, there are a large number of input variables related with an output As the number of input variables increases, the training time of fuzzy neural networks required increases exponentially. Thus, it is essential to reduce the number of inputs to a fuzzy neural network and to select the optimum number of mutually independent inputs that are able to clearly define the input-output mapping. In this work, principal component analysis (PCA), genetic algorithms (CA) and probability theory are combined to select new important input features. A proposed feature selection method is applied to the signal estimation of the steam generator water level, the hot-leg flowrate, the pressurizer water level and the pressurizer pressure sensors in pressurized water reactors and compared with other input feature selection methods.

  • PDF

Time domain Filtering of Image for Lip-reading Enhancement (시간영역 이미지 필터링에 의한 립리딩 성능 향상)

  • Lee Jeeeun;Kim Jinyoung;Lee Joohun
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.45-48
    • /
    • 2001
  • 립리딩은 잡음 환경 하에서 음성 인식 성능을 향상을 위해 영상정보를 이용한 바이모달(bimodal)음성인식으로 연구되었다[1][2]. 그 일환으로 이미 영상정보를 이용한 립리딩은 구현되었다. 그러나 현재까지의 시스템들은 환경의 변화에 강인하지 못하다. 본 논문에서는 이미지 기반 립리딩 방법을 적용하여 입술 영역을 보다 안정적으로 찾아 성능을 향상 시켰다. 그러나 이 방법은 많은 데이터량을 처리해야 하므로 전처리 과정이 필요하다. 전처리로 입력영상을 그레이 레벨로 변환하는 방법과, 입술을 반으로 접는 방법, 그리고 주성분 분석(PCA: Principal Component Analysis)을 사용하였다. 또한 인식성능 향상을 위해 음성에서 잡음 제거나 분석$\cdot$합성에 효과적인 성능을 보이는 RASTA(Relative Spectral)필터를 적용하여 시간 영역에서의 변화가 적은 성분이나 급변하는 성분, 그 밖의 잡음 등을 제거하였다. 그 결과 $72.7\%$의 높은 인식 성능을 보였다.

  • PDF

Generating a Rectangular Net from Unorganized Point Cloud Data Using an Implicit Surface Scheme (음 함수 곡면기법을 이용한 임의의 점 군 데이터로부터의 사각망 생성)

  • Yoo, D.J.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.4
    • /
    • pp.274-282
    • /
    • 2007
  • In this paper, a method of constructing a rectangular net from unorganized point cloud data is presented. In the method an implicit surface that fits the given point data is generated by using principal component analysis(PCA) and adaptive domain decomposition method(ADDM). Then a complete and quality rectangular net can be obtained by extracting voxel data from the implicit surface and projecting exterior faces of extracted voxels onto the implicit surface. The main advantage of the proposed method is that a quality rectangular net can be extracted from randomly scattered 3D points only without any further information. Furthermore the results of this works can be used to obtain many useful information including a slicing data, a solid STL model and a NURBS surface model in many areas involved in treatment of large amount of point data by proper processing of implicit surface and rectangular net generated previously.

Automatic Classification of Power System Harmonic Disturbances (전력시스템 고조파 외란의 자동식별)

  • Kim, Byoung-Chul;Kim, Hyun-Soo;Nam, Sang-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.7
    • /
    • pp.551-558
    • /
    • 2000
  • In this paper a systematic approach to automatic classificationi of power system harmonic disturbances is proposed where the proposed approach consists of the following three steps:(i) detecting and localizing each harmonic disturbance by applying discrete wavelet transform(DWT) (ii) extracting an efficient feature vector from each detected disturbance waveform by utilizing FFT and principal component analysis (PCA) along with Fisher's criterion and (iii) classifying the corresponding type of each harmonic disturbance by recognizing the pattern of each feature vector. To demonstrate the performance and applicability of the proposed classification procedure some simulation results obtained by analyzing 8-class power system harmonic disturbances being generated with Matlab power system blockset are also provided.

  • PDF

Face Image Compression using Generalized Hebbian Algorithm of Non-Parsed Image

  • Kyung Hwa lee;Seo, Seok-Bae;Kim, Daijin;Kang, Dae-Seong
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.847-850
    • /
    • 2000
  • This paper proposes an image compressing and template matching algorithm for face image using GHA (Generalized Hebbian Algorithm). GHA is a part of PCA (Principal Component Analysis), that has single-layer perceptrons and operates and self-organizing performance. We used this algorithm for feature extraction of face shape, and our simulations verify the high performance for the proposed method. The shape for face in the fact that the eigenvector of face image can be efficiently represented as a coefficient that can be acquired by a set of basis is to compress data of image. From the simulation results, the mean PSNR performance is 24.08[dB] at 0.047bpp, and reconstruction experiment shows that good reconstruction capacity for an image that not joins at leaning.

  • PDF

Face Recognition by Using Principal Component Analysis of Unsupervised Learning (자율학습의 PCA를 이용한 얼굴인식)

  • Cho Yong-Hyun;Cha Joo-Hee
    • Annual Conference of KIPS
    • /
    • 2004.11a
    • /
    • pp.583-586
    • /
    • 2004
  • 본 논문에서는 자율학습의 속성을 가지는 주요성분분석을 이용한 얼굴인식 기법을 제안하였다. 이는 대용량의 입력 데이터를 통계적으로 독립인 특징들의 집합으로 변환시켜 중복신호를 제거하는 특성을 가지는 주요성분분석의 우수한 속성을 이용한 것이다. 제안된 기법을 Yale 얼굴영상 데이터베이스로부터 선택된 20개의 $320{\ast}243$ 픽셀의 영상을 대상으로 시뮬레이션한 결과, 주요성분의 개수에 따른 압축성능과 city-block, Euclidian, 그리고 negative angle(cosine)의 거리척도에 따른 인식에서의 분류성능에서 우수한 성능이 있음을 확인할 수 있었다.

  • PDF