• Title/Summary/Keyword: PCA(Principal Component Analysis

Search Result 1,243, Processing Time 0.027 seconds

Non-Contact Heart Rate Monitoring from Face Video Utilizing Color Intensity

  • Sahin, Sarker Md;Deng, Qikang;Castelo, Jose;Lee, DoHoon
    • Journal of Multimedia Information System
    • /
    • v.8 no.1
    • /
    • pp.1-10
    • /
    • 2021
  • Heart Rate is a crucial physiological parameter that provides basic information about the state of the human body in the cardiovascular system, as well as in medical diagnostics and fitness assessments. At present day, it has been demonstrated that facial video-based photoplethysmographic signal captured using a low-cost RGB camera is possible to retrieve remote heart rate. Traditional heart rate measurement is mostly obtained by direct contact with the human body, therefore, it can result inconvenient for long-term measurement due to the discomfort that it causes to the subject. In this paper, we propose a non-contact-based remote heart rate measuring approach of the subject which depends on the color intensity variation of the subject's facial skin. The proposed method is applied in two regions of the subject's face, forehead and cheeks. For this, three different algorithms are used to measure the heart rate. i.e., Fast Fourier Transform (FFT), Independent Component Analysis (ICA) and Principal Component Analysis (PCA). The average accuracy for the three algorithms utilizing the proposed method was 89.25% in both regions. It is also noteworthy that the FastICA algorithm showed a higher average accuracy of more than 92% in both regions. The proposed method obtained 1.94% higher average accuracy than the traditional method based on average color value.

Analytic Techniques for Change Detection using Landsat (Landast 영상을 이용한 변화탐지 분석 기법 연구)

  • Choi, Chul-Uong;Lee, Chang-Hun;Suh, Yong-Cheol;Kim, Ji-Yong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.3
    • /
    • pp.13-20
    • /
    • 2009
  • Techniques for change detection using satellite images enable efficient detection of natural and artificial changes in use of land through multi-phase images. As for change detection, different results are made based on methods of calibration of satellite images, types of input data, and techniques in change analysis. Thus, an analytic technique that is appropriate to objectives of a study shall be applied as results are different based on diverse conditions even when an identical satellite and an identical image are used for change detection. In this study, Normalized Difference Vegetation Index (NDVI) and Principal Component Analysis (PCA) were conducted after geometric calibration of satellite images which went through absolute and relative radiometric calibrations and change detection analysis was conducted using Image Difference (ID) and Image Rationing (IR). As a result, ID-NDVI showed excellent accuracy in change detection related to vegetation. ID-PCA showed 90% of accuracy in all areas. IR-NDVI had 90% of accuracy while it was 70% and below as for paddies and dry fields${\rightarrow}$grassland. IR-PCA had excellent change detection over all areas.

  • PDF

Assessment of Risk Levels in Cut-Slope Using Dimensionality Reduction and Clustering Analysis (차원축소와 클러스터링 분석을 활용한 도로비탈면 위험등급 산정)

  • Seo, Seunghwan;Kim, Gunwoong;Woo, Younghoon;Park, Byungsuk;Kim, Juhyong;Kim, Seung-Hyun;Chung, Moonkyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.5
    • /
    • pp.113-129
    • /
    • 2024
  • This study reclassifies the risk levels of cut-slopes and addresses the limitations inherent in existing evaluation methods using road slope maintenance data. Conventional risk assessment predominantly relies on subjective expert judgment, resulting in issues of consistency and reliability. To mitigate these limitations, this study applies dimensionality reduction techniques, specifically Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA), followed by K-means clustering, to classify new risk levels. The clustering results using PCA demonstrated more distinct cluster separation compared to LDA, and also showed superior performance in terms of the silhouette coefficient and other clustering metrics. This suggests that the existing risk level labels may not adequately capture the underlying data structure. Furthermore, the inconsistency observed between LDA-based clustering results and current risk labels indicates potential reliability issues in the present labeling approach. To resolve this, new risk levels were assigned using PCA and K-means clustering, with cluster risk levels evaluated based on risk scores. A quantitative analysis of key risk factors was also conducted to establish criteria for risk classification and assess the impact of each variable on the different risk levels. This study proposes a data-driven, objective, and quantitative approach to risk level evaluation, aiming to improve the efficiency and reliability of road slope management.

Discrimination of the geographical origin of commercial sesame oils using fatty acids composition combined with linear discriminant analysis (지방산 조성과 선형판별분석을 활용한 유통판매 참기름의 원산지 판별)

  • Kim, Nam-Hoon;Choi, Chae-man;Lee, Young-Ju;Kim, Na-Young;Hong, Mi-Sun;Yu, In-Sil
    • Analytical Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.134-141
    • /
    • 2021
  • In this study, the fatty acid (FA) composition of commercial sesame oils (n = 62) was investigated using gas chromatography with flame ionization detector (GC-FID). Multivariate statistical techniques, including principal component analysis (PCA) and linear discriminant analysis (LDA), were applied to the chromatographic data of the FAs to discriminate the geographical origin of sesame oils. A statistically significant difference was observed in the content of C16:0, C18:0, C18:1, and C18:2 between domestic and imported sesame oils. A satisfactory recovery rate of 82.8-100.2 % was achieved for C16:0, C18:0, C18:1, C18:2, and C18:3. The correlation of C16:0, C18:1, and C18:2 in domestic sesame oils showed opposite trends compared to imported oils. The PCA plot demonstrated that sesame oils were clustered in distinct groups according to their origin. LDA was used to predict sesame oil samples in one of the two groups. C16:0 (Wilks λ = 0.361) and C18:1 (Wilks λ = 0.637) demonstrated the highest discriminant power for classifying the origin of the samples. The correct prediction rates were 88.9 % and 100 % for the domestic and imported samples, respectively. Further, 60 of the 62 sesame oil samples (96.8 %) were correctly classified, indicating that this approach can be used as a valuable tool to predict and classify the geographical origin of sesame oils.

Morphological Characteristics and Classification of Zizyphus Cultivars in Korea by Multivariative Analysis (다변량 분석에 의한 국내산 대추나무 품종의 형태적 특성과 유연관계)

  • Lee Moon-Ho;Hwang Suk-In;Jang Yong-Seok
    • Korean Journal of Plant Resources
    • /
    • v.19 no.1
    • /
    • pp.105-111
    • /
    • 2006
  • The objectives of this study, an analysis of fruit and leaf morphological characteristics among the five Zizyphus cultivars could be used for the investigation of cultivars classification and could provide information to make out the UPOV TG(Test Guidelines). ANOVA tests showed that there were statistically significant differences in all fruit and leaf morphological characteristics among the five Zizyphus cultivars at 1% level. But, for kernel characteristics, differences were statistically non-significant among the cultivars. Approximately, the Wolchul and Boeun cultivars showed larger and smaller values in overall characteristics and cultivars, respectively. The results of principal component analysis(PCA) for the fruit and leaf morphological characteristics showed that the first for principal components(PC's) explained about 65.3% of the total variation. The first PC was correlated with those characteristics that were mainly related to the terminal leaf length(TLL), leaf length(LL), fruit length(FL), terminal leaf width(TLW), and leaf petiole length(LPL). The second and third PC was mainly correlated with the terminal leaf morphological index(TLMI). Therefore, these characteristics were important to analysis of the fruit and leaf morphological characteristics and classification among the five Zizyphus cultivars. Cluster analysis using UPGMA method based on principal components showed that five Zizyphus cultivars could be clustered into two groups. Group I comprises Mudung, Wolchul, and Bokjo and Geumsung cultivars, Group II is Boeun cultivar. These results well similar to that of principal component analysis.

Numerical taxonomic study of the genus Sorbaria (Ser.) A. Braun in Asch. (Rosaceae) (쉬땅나무속(장미과)의 수리분류학적 연구)

  • SONG, Jun-Ho;HONG, Suk-Pyo
    • Korean Journal of Plant Taxonomy
    • /
    • v.48 no.3
    • /
    • pp.230-247
    • /
    • 2018
  • We conducted principal component analyses using the quantitative characteristics of the genus Sorbaria to investigate and explore morphological variation and diagnostic characteristics. The genus Sorbaria was divided into two groups based on erect or pendulous inflorescence, the existence of hairs on the ovary and follicle surfaces, the number of stamens, and the shape of the sepal. As a result of our investigation and of a morphometric analysis, these two groups could be also classified using quantitative characteristics, in this case the number of leaflets, the size of the leaflets, the width of the inflorescence, the size of the sepal, the petal, and the follicles and seeds. In the Sorbifolia group (S. grandiflora and S. sorbifolia complex), the size of lateral leaflets, number of veins, gland and stellate density on the abaxial surface of leaflets, and the petal and follicle size were found to be useful identification characteristics. The terminal and lateral leaflet size and the gland and stellate density on the abaxial surface of the leaflets were found to be characters of taxonomic value for the Kirilowii group (S. arborea complex, S. kirilowii, and S. tomentosa complex). The results of the numerical analysis conducted here can provide valuable information to those reconsidering and delimiting a taxonomic revision of the genus Sorbaria.

Comparison of LDA and PCA for Korean Pro Go Player's Opening Recognition (한국 프로바둑기사 포석 인식을 위한 선형판별분석과 주성분분석 비교)

  • Lee, Byung-Doo
    • Journal of Korea Game Society
    • /
    • v.13 no.4
    • /
    • pp.15-24
    • /
    • 2013
  • The game of Go, which is originated at least more than 2,500 years ago, is one of the oldest board games in the world. So far the theoretical studies concerning to the Go openings are still insufficient. We applied traditional LDA algorithm to recognize a pro player's opening to a class obtained from the training openings. Both class-independent LDA and class-dependent LDA methods are conducted with the Go game records of the Korean top 10 professional Go players. Experimental result shows that the average recognition rate of class-independent LDA is 14% and class-dependent LDA 12%, respectively. Our research result also shows that in contrary to our common sense the algorithm based on PCA outperforms the algorithm based on LDA and reveals the new fact that the Euclidean distance metric method rarely does not inferior to LDA.

Effective Handwriting Verification through DTW and PCA (DTW와 PCA에 기반한 효과적인 필적 검증)

  • Jang, Seok-Woo;Huh, Moon-Haeng;Kim, Gye-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.7
    • /
    • pp.25-32
    • /
    • 2009
  • In this paper, we propose a new handwriting verification method using pattern analysis in off-line environments. The proposed method first segments character regions in a document and extracts effective features from the segmented regions. It then estimates the similarity between the extracted non-linear features and reference ones by using dynamic time warping and principal component analysis. Our handwriting verification method extracts handwriting features effectively and enables the verification of handwriting with various lengths of features as well as ones of short patterns. The experimental results show that our method outperforms others in terms as accuracy. We expect that the proposed method will automate the manual handwriting verification tasks and provide much objectivity on handwriting identification.

Face Tracking System Using Updated Skin Color (업데이트된 피부색을 이용한 얼굴 추적 시스템)

  • Ahn, Kyung-Hee;Kim, Jong-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.5
    • /
    • pp.610-619
    • /
    • 2015
  • *In this paper, we propose a real-time face tracking system using an adaptive face detector and a tracking algorithm. An image is divided into the regions of background and face candidate by a real-time updated skin color identifying system in order to accurately detect facial features. The facial characteristics are extracted using the five types of simple Haar-like features. The extracted features are reinterpreted by Principal Component Analysis (PCA), and the interpreted principal components are processed by Support Vector Machine (SVM) that classifies into facial and non-facial areas. The movement of the face is traced by Kalman filter and Mean shift, which use the static information of the detected faces and the differences between previous and current frames. The proposed system identifies the initial skin color and updates it through a real-time color detecting system. A similar background color can be removed by updating the skin color. Also, the performance increases up to 20% when the background color is reduced in comparison to extracting features from the entire region. The increased detection rate and speed are acquired by the usage of Kalman filter and Mean shift.

A Comparison of the Essential Amino Acid Content and the Retention Rate by Chicken Part according to Different Cooking Methods

  • Kim, Honggyun;Do, Hyun Wook;Chung, Heajung
    • Food Science of Animal Resources
    • /
    • v.37 no.5
    • /
    • pp.626-634
    • /
    • 2017
  • This study set out to identify the changes in the nutrient contents during the chicken cooking process as basic data for the establishment of a national health nutrition policy. Samples were produced using 3 chicken parts (wing, breast, and leg) and 7 cooking methods (boiling, pan-cooking, pan-frying, deep-frying, steaming, roasting, and microwaving), and the essential amino acid contents, principal components, and retention rates were analyzed. Weight loss was observed in all chicken parts with all cooking methods. The protein and essential amino acid contents of the chicken samples differed significantly according to the part and the cooking method (p<0.01). The protein and essential amino acid contents (g/100 g) of raw and cooked chicken parts showed ranges of 16.81-32.36 and 0.44-2.45, respectively. The principal component analysis (PCA) clearly demonstrated that the cooking methods and chicken parts produced similar trends for the essential amino acid contents. The retention rates of the chicken parts varied with the cooking methods, yielding a minimum value of 83% for isoleucine in a roasted wing, 91% for protein in a steamed breast, and 77% for isoleucine and lysine in a roasted leg. Therefore, the protein and amino acid contents of the roasted breast were higher than those of the other cooked chicken parts.