• Title/Summary/Keyword: PCA(Principal Component Analysis

Search Result 1,243, Processing Time 0.033 seconds

Principal Discriminant Variate (PDV) Method for Classification of Multicollinear Data: Application to Diagnosis of Mastitic Cows Using Near-Infrared Spectra of Plasma Samples

  • Jiang, Jian-Hui;Tsenkova, Roumiana;Yu, Ru-Qin;Ozaki, Yukihiro
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1244-1244
    • /
    • 2001
  • In linear discriminant analysis there are two important properties concerning the effectiveness of discriminant function modeling. The first is the separability of the discriminant function for different classes. The separability reaches its optimum by maximizing the ratio of between-class to within-class variance. The second is the stability of the discriminant function against noises present in the measurement variables. One can optimize the stability by exploring the discriminant variates in a principal variation subspace, i. e., the directions that account for a majority of the total variation of the data. An unstable discriminant function will exhibit inflated variance in the prediction of future unclassified objects, exposed to a significantly increased risk of erroneous prediction. Therefore, an ideal discriminant function should not only separate different classes with a minimum misclassification rate for the training set, but also possess a good stability such that the prediction variance for unclassified objects can be as small as possible. In other words, an optimal classifier should find a balance between the separability and the stability. This is of special significance for multivariate spectroscopy-based classification where multicollinearity always leads to discriminant directions located in low-spread subspaces. A new regularized discriminant analysis technique, the principal discriminant variate (PDV) method, has been developed for handling effectively multicollinear data commonly encountered in multivariate spectroscopy-based classification. The motivation behind this method is to seek a sequence of discriminant directions that not only optimize the separability between different classes, but also account for a maximized variation present in the data. Three different formulations for the PDV methods are suggested, and an effective computing procedure is proposed for a PDV method. Near-infrared (NIR) spectra of blood plasma samples from mastitic and healthy cows have been used to evaluate the behavior of the PDV method in comparison with principal component analysis (PCA), discriminant partial least squares (DPLS), soft independent modeling of class analogies (SIMCA) and Fisher linear discriminant analysis (FLDA). Results obtained demonstrate that the PDV method exhibits improved stability in prediction without significant loss of separability. The NIR spectra of blood plasma samples from mastitic and healthy cows are clearly discriminated between by the PDV method. Moreover, the proposed method provides superior performance to PCA, DPLS, SIMCA and FLDA, indicating that PDV is a promising tool in discriminant analysis of spectra-characterized samples with only small compositional difference, thereby providing a useful means for spectroscopy-based clinic applications.

  • PDF

PRINCIPAL DISCRIMINANT VARIATE (PDV) METHOD FOR CLASSIFICATION OF MULTICOLLINEAR DATA WITH APPLICATION TO NEAR-INFRARED SPECTRA OF COW PLASMA SAMPLES

  • Jiang, Jian-Hui;Yuqing Wu;Yu, Ru-Qin;Yukihiro Ozaki
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1042-1042
    • /
    • 2001
  • In linear discriminant analysis there are two important properties concerning the effectiveness of discriminant function modeling. The first is the separability of the discriminant function for different classes. The separability reaches its optimum by maximizing the ratio of between-class to within-class variance. The second is the stability of the discriminant function against noises present in the measurement variables. One can optimize the stability by exploring the discriminant variates in a principal variation subspace, i. e., the directions that account for a majority of the total variation of the data. An unstable discriminant function will exhibit inflated variance in the prediction of future unclassified objects, exposed to a significantly increased risk of erroneous prediction. Therefore, an ideal discriminant function should not only separate different classes with a minimum misclassification rate for the training set, but also possess a good stability such that the prediction variance for unclassified objects can be as small as possible. In other words, an optimal classifier should find a balance between the separability and the stability. This is of special significance for multivariate spectroscopy-based classification where multicollinearity always leads to discriminant directions located in low-spread subspaces. A new regularized discriminant analysis technique, the principal discriminant variate (PDV) method, has been developed for handling effectively multicollinear data commonly encountered in multivariate spectroscopy-based classification. The motivation behind this method is to seek a sequence of discriminant directions that not only optimize the separability between different classes, but also account for a maximized variation present in the data. Three different formulations for the PDV methods are suggested, and an effective computing procedure is proposed for a PDV method. Near-infrared (NIR) spectra of blood plasma samples from daily monitoring of two Japanese cows have been used to evaluate the behavior of the PDV method in comparison with principal component analysis (PCA), discriminant partial least squares (DPLS), soft independent modeling of class analogies (SIMCA) and Fisher linear discriminant analysis (FLDA). Results obtained demonstrate that the PDV method exhibits improved stability in prediction without significant loss of separability. The NIR spectra of blood plasma samples from two cows are clearly discriminated between by the PDV method. Moreover, the proposed method provides superior performance to PCA, DPLS, SIMCA md FLDA, indicating that PDV is a promising tool in discriminant analysis of spectra-characterized samples with only small compositional difference.

  • PDF

Real-Time Face Recognition Based on Subspace and LVQ Classifier (부분공간과 LVQ 분류기에 기반한 실시간 얼굴 인식)

  • Kwon, Oh-Ryun;Min, Kyong-Pil;Chun, Jun-Chul
    • Journal of Internet Computing and Services
    • /
    • v.8 no.3
    • /
    • pp.19-32
    • /
    • 2007
  • This paper present a new face recognition method based on LVQ neural net to construct a real time face recognition system. The previous researches which used PCA, LDA combined neural net usually need much time in training neural net. The supervised LVQ neural net needs much less time in training and can maximize the separability between the classes. In this paper, the proposed method transforms the input face image by PCA and LDA sequentially into low-dimension feature vectors and recognizes the face through LVQ neural net. In order to make the system robust to external light variation, light compensation is performed on the detected face by max-min normalization method as preprocessing. PCA and LDA transformations are applied to the normalized face image to produce low-level feature vectors of the image. In order to determine the initial centers of LVQ and speed up the convergency of the LVQ neural net, the K-Means clustering algorithm is adopted. Subsequently, the class representative vectors can be produced by LVQ2 training using initial center vectors. The face recognition is achieved by using the euclidean distance measure between the center vector of classes and the feature vector of input image. From the experiments, we can prove that the proposed method is more effective in the recognition ratio for the cases of still images from ORL database and sequential images rather than using conventional PCA of a hybrid method with PCA and LDA.

  • PDF

Influence of heritability on craniofacial soft tissue characteristics of monozygotic twins, dizygotic twins, and their siblings using Falconer's method and principal components analysis

  • Song, Jeongmin;Chae, Hwa Sung;Shin, Jeong Won;Sung, Joohon;Song, Yun-Mi;Baek, Seung-Hak;Kim, Young Ho
    • The korean journal of orthodontics
    • /
    • v.49 no.1
    • /
    • pp.3-11
    • /
    • 2019
  • Objective: The purpose of this study was to investigate the influence of heritability on the craniofacial soft tissue cephalometric characteristics of monozygotic (MZ) twins, dizygotic (DZ) twins, and their siblings (SIB). Methods: The samples comprised Korean adult twins and their siblings (mean age, 39.8 years; MZ group, n = 36 pairs; DZ group, n = 13 pairs of the same gender; and SIB group, n = 26 pairs of the same gender). Thirty cephalometric variables were measured to characterize facial profile, facial height, soft-tissue thickness, and projection of nose and lip. Falconer's method was used to calculate heritability (low heritability, $h^2$ < 0.2; high heritability, $h^2$ > 0.9). After principal components analysis (PCA) was performed to extract the models, we calculated the intraclass correlation coefficient (ICC) value and heritability of each component. Results: The MZ group exhibited higher ICC values for all cephalometric variables than DZ and SIB groups. Among cephalometric variables, the highest ${h^2}_{(MZ-DZ)}$ and ${h^2}_{(MZ-SIB)}$ values were observed for the nasolabial angle (NLA, 1.544 and 2.036), chin angle (1.342 and 1.112), soft tissue chin thickness (2.872 and 1.226), and upper lip thickness ratio (1.592 and 1.026). PCA derived eight components with 84.5% of a cumulative explanation. The components that exhibited higher values of ${h^2}_{(MZ-DZ)}$ and ${h^2}_{(MZ-SIB)}$ were PCA2, which includes facial convexity, NLA, and nose projection (1.026 and 0.972), and PCA7, which includes chin angle and soft tissue chin thickness (2.107 and 1.169). Conclusions: The nose and soft tissue chin were more influenced by genetic factors than other soft tissues.

Emotion Recognition and Expression using Facial Expression (얼굴표정을 이용한 감정인식 및 표현 기법)

  • Ju, Jong-Tae;Park, Gyeong-Jin;Go, Gwang-Eun;Yang, Hyeon-Chang;Sim, Gwi-Bo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.295-298
    • /
    • 2007
  • 본 논문에서는 사람의 얼굴표정을 통해 4개의 기본감정(기쁨, 슬픔, 화남, 놀람)에 대한 특징을 추출하고 인식하여 그 결과를 이용하여 감정표현 시스템을 구현한다. 먼저 주성분 분석(Principal Component Analysis)법을 이용하여 고차원의 영상 특징 데이터를 저차원 특징 데이터로 변환한 후 이를 선형 판별 분석(Linear Discriminant Analysis)법에 적용시켜 좀 더 효율적인 특징벡터를 추출한 다음 감정을 인식하고, 인식된 결과를 얼굴 표현 시스템에 적용시켜 감정을 표현한다.

  • PDF

PCA를 이용한 유전자 재조합 대장균의 ALA 생산공정의 해석

  • Gang, Tae-Hyeong;Jeong, Sang-Yun;Im, Yong-Sik;Kim, Chun-Gwang;Jeong, Sang-Uk;Lee, Jong-Il
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.157-160
    • /
    • 2003
  • ALA is an intermediate in the tetrapyrrole biosynthesis pathway and has extensive applications as a biodegradable herbicide and insecticide as well as medical applications including photodynamic therapy of cancers. For the development of mass production process of ALA it is necessary to on-line monitor some metabolites such as glycine, succinate, LA and ALA. In this study, medium compositions and fermentation conditions were investigated for enhancement of ALA production by recombinant E. coli. A 2-dimensional fluorescence sensor was employed to monitor the bioprocess of ALA production. The monitored data is analyzed using principal component analysis, a powerful tool for multivariate statistical analysis.

  • PDF

A General Representation of Motion Silhouette Image: Generic Motion Silhouette Image(GMSI) (움직임 실루엣 영상의 일반적인 표현 방식에 대한 연구)

  • Hong, Sung-Jun;Lee, Hee-Sung;Kim, Eun-Tai
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.8
    • /
    • pp.749-753
    • /
    • 2007
  • In this paper, a generalized version of the Motion Silhouette Image(MSI) called the Generic Motion Silhouette Image (GMSI) is proposed for gait recognition. The GMSI is a gray-level image and involves the spatiotemporal information of individual motion. The GMSI not only generalizes the MSI but also reflects a flexible feature of a gait sequence. Along with the GMSI, we use the Principal Component Analysis(PCA) to reduce the dimensionality of the GMSI and the Nearest Neighbor(NN) for classification. We apply the proposed feature to NLPR database and compare it with the conventional MSI. Experimental results show the effectiveness of the GMSI.

Multivariate Analysis on 1H-NMR Spectroscopy of Olive Flounder Paralichthys olivaceus Serum (1H-NMR 스펙트럼의 다변량통계분석을 통한 넙치(Paralichthys olivaceus)의 백신 반응의 지표물질 분석)

  • Cho, Ji-Young
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.45 no.4
    • /
    • pp.367-371
    • /
    • 2012
  • To investigate the relationship between metabolic changes in $^1H$-nuclear magnetic resonance (NMR) spectra and fish vaccination, serum was collected from olive flounders treated with a formalin-killed Edwardsiella tarda vaccine and used for $^1H$-NMR metabolite profiling. Principal component analysis and partial least squares were applied to the $^1H$-NMR profile to reduce its complexity and establish class-related clusters. Relative lipid regions were distinguished in vaccinated and non-vaccinated serum. Then, the lipids were extracted from the serum and analyzed. Triolein was identified.

A Study on the Image Analysis used by Color Distribution (색상분포에 대한 이미지 분석에 관한 연구)

  • Park, Hyeon-Geun;Lee, Hee-Suk;Jang, Il-Ki;Lee, Sang-Moon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2012.01a
    • /
    • pp.69-72
    • /
    • 2012
  • 영상처리 기법을 이용한 이미지 인식에 관한 콘텐츠들은 다양한 알고리즘을 사용하고 있다. 영상처리 기법 중 이미지 인식 기법에는 대표적으로 PCA(Principal Component Analysis)알고리즘이 있으며, 이 알고리즘에 적용된 대표적인 콘텐츠로 얼굴 문자인식이 있다. 이 알고리즘은 정확성을 위하여 학습을 통한 영상의 저장과 인식을 통한 복잡한 알고리즘을 사용한다. 복잡한 알고리즘의 사용으로 간단한 이미지 인식 콘텐츠의 경우 시스템 처리속도에 영향을 줄 수 있다. 따라서 이 논문에서는 색상의 분포를 통하여 그 수치를 이용한 이미지를 분석한 실험을 통하여 간단한 이미지인식 시스템을 위한 알고리즘을 제시하고, 이 알고리즘을 통해서 얻을 수 있는 장 단점을 분석하였다.

  • PDF