• Title/Summary/Keyword: PCA(Principal Component Analysis

Search Result 1,243, Processing Time 0.034 seconds

Principal Component Analysis Based Method for a Fault Diagnosis Model DAMADICS Process (주성분 분석을 이용한 DAMADICS 공정의 이상진단 모델 개발)

  • Park, Jae Yeon;Lee, Chang Jun
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.35-41
    • /
    • 2016
  • In order to guarantee the process safety and prevent accidents, the deviations from normal operating conditions should be monitored and their root causes have to be identified as soon as possible. The statistical theories-based method among various fault diagnosis methods has been gaining popularity, due to simplicity and quickness. However, according to fault magnitudes, the scalar value generated by statistical methods can be changed and this point can lead to produce wrong information. To solve this difficulty, this work employs PCA (Principal Component Analysis) based method with qualitative information. In the case study of our previous study, the number of assumed faults is much smaller than that of process variables. In the case study of this study, the number of predefined faults is 19, while that of process variables is 6. It means that a fault diagnosis becomes more difficult and it is really hard to isolate a single fault with a small number of variables. The PCA model is constructed under normal operation data in order to get a loading vector and the data set of assumed faulty conditions is applied with PCA model. The significant changes on PC (Principal Components) axes are monitored with CUSUM (Cumulative Sum Control Chart) and recorded to make the information, which can be used to identify the types of fault.

Identifying an Appropriate Analysis Duration for the Principal Component Analysis of Water Pipe Flow Data (상수도 관망 유량관측 자료의 주성분 분석을 위한 분석기간의 설정)

  • Park, Suwan;Jeon, Daehoon;Jung, Soyeon;Kim, Joohwan;Lee, Doojin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.3
    • /
    • pp.351-361
    • /
    • 2013
  • In this study the Principal Component Analysis (PCA) was applied to flow data in a water distribution pipe system to analyze the relevance between the flow observation dates, which have the outliers of observed night flows, and the maintenance records. The data was obtained from four small size water distribution blocks to which 13 maintenance records such as pipe leak and water meter leak belong. The flow data during four months were used for the analysis. The analysis was carried out to identify an appropriate analysis period for a PCA model for a water distribution block. To facilitate the analyses a computational algorithm was developed. MATLAB was utilized to realize the algorithm as a computer program. As a result, an appropriate PCA period for each of the case study small size water distribution blocks was identified.

Principal Component Analysis with Coefficient of Variation Matrix (변동계수행렬을 이용한 주성분분석)

  • Kim, Ji-Hyun
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.3
    • /
    • pp.385-392
    • /
    • 2015
  • Principal component analysis (PCA), a dimension-reduction technique, is usually implemented after the variables are standardized when the measurement unit of variables are different. To standardize a variable we divide it by its standard deviation. But there is another way to transform a variable to be independent of its measurement unit. It is to divide it by its mean rather than standard deviation. Implementing PCA on standardized variables is equivalent to implementing PCA with a correlation matrix of original variables. Similarly, implementing PCA on the transformed variables divided by their means is equivalent to implementing PCA with a matrix related to the coefficients of variation of the original variables. We explain why we need to implement PCA on the variables transformed by their means.

A Study on Feature Selection in Face Image Using Principal Component Analysis and Particle Swarm Optimization Algorithm (PCA와 입자 군집 최적화 알고리즘을 이용한 얼굴이미지에서 특징선택에 관한 연구)

  • Kim, Woong-Ki;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2511-2519
    • /
    • 2009
  • In this paper, we introduce the methodological system design via feature selection using Principal Component Analysis and Particle Swarm Optimization algorithms. The overall methodological system design comes from three kinds of modules such as preprocessing module, feature extraction module, and recognition module. First, Histogram equalization enhance the quality of image by exploiting contrast effect based on the normalized function generated from histogram distribution values of 2D face image. Secondly, PCA extracts feature vectors to be used for face recognition by using eigenvalues and eigenvectors obtained from covariance matrix. Finally the feature selection for face recognition among the entire feature vectors is considered by means of the Particle Swarm Optimization. The optimized Polynomial-based Radial Basis Function Neural Networks are used to evaluate the face recognition performance. This study shows that the proposed methodological system design is effective to the analysis of preferred face recognition.

Term Frequency-Inverse Document Frequency (TF-IDF) Technique Using Principal Component Analysis (PCA) with Naive Bayes Classification

  • J.Uma;K.Prabha
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.4
    • /
    • pp.113-118
    • /
    • 2024
  • Pursuance Sentiment Analysis on Twitter is difficult then performance it's used for great review. The present be for the reason to the tweet is extremely small with mostly contain slang, emoticon, and hash tag with other tweet words. A feature extraction stands every technique concerning structure and aspect point beginning particular tweets. The subdivision in a aspect vector is an integer that has a commitment on ascribing a supposition class to a tweet. The cycle of feature extraction is to eradicate the exact quality to get better the accurateness of the classifications models. In this manuscript we proposed Term Frequency-Inverse Document Frequency (TF-IDF) method is to secure Principal Component Analysis (PCA) with Naïve Bayes Classifiers. As the classifications process, the work proposed can produce different aspects from wildly valued feature commencing a Twitter dataset.

Photomosaics Using Principal Component Analysis (주성분 분석을 사용한 포토모자이크)

  • Chun, Young-Jae;Oh, Kyoung-Su;Cho, Sung-Hyun
    • Journal of Korea Game Society
    • /
    • v.11 no.1
    • /
    • pp.139-146
    • /
    • 2011
  • We propose a photomosaic method using PCA(Principal Component Analysis), which uses PCA results to find the most similar candidate fast and correctly. When two images are projected onto a certain principal component, if their coefficients are similar, they are also likely to be similar. Thus our photomosaic method using PCA can take care of both colors and shapes of images. Our method using coefficient comparison is faster than the one using all color comparison and more correct than the one using average comparison. Our hardware accelerated photomosaic algorithm can handle video images in real-time.

Robust Facial Expression Recognition using PCA Representation (PCA 표상을 이용한 강인한 얼굴 표정 인식)

  • Shin Young-Suk
    • Korean Journal of Cognitive Science
    • /
    • v.16 no.4
    • /
    • pp.323-331
    • /
    • 2005
  • This paper proposes an improved system for recognizing facial expressions in various internal states that is illumination-invariant and without detectable rue such as a neutral expression. As a preprocessing to extract the facial expression information, a whitening step was applied. The whitening step indicates that the mean of the images is set to zero and the variances are equalized as unit variances, which reduces murk of the variability due to lightening. After the whitening step, we used the facial expression information based on principal component analysis(PCA) representation excluded the first 1 principle component. Therefore, it is possible to extract the features in the lariat expression images without detectable cue of neutral expression from the experimental results, we ran also implement the various and natural facial expression recognition because we perform the facial expression recognition based on dimension model of internal states on the images selected randomly in the various facial expression images corresponding to 83 internal emotional states.

  • PDF

Principal Component Analysis of BGP Update Streams

  • Xu, Kuai;Chandrashekar, Jaideep;Zhang, Zhi-Li
    • Journal of Communications and Networks
    • /
    • v.12 no.2
    • /
    • pp.191-197
    • /
    • 2010
  • In this paper, we propose a novel methodology to identify border gateway protocol (BGP) updates associated with major events - affecting network reachability to multiple ASes - and separate them (statistically) from those attributable to minor events, which individually generate few updates, but collectively form the persistent background noise observed at BGP vantage points. Our methodology is based on principal component analysis, which enables us to transform and reduce the BGP updates into different AS clusters that are likely affected by distinct major events. We demonstrate the accuracy and effectiveness of our methodology through simulations and real BGP data.

Comparison of hydrochemical informations of groundwater obtained from two different underground storage systems

  • Lee, Jeonghoon;Kim, Jun-Mo;Chang, Ho-Wan
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.110-113
    • /
    • 2002
  • Statistical- based, principal component analysis (PCA) was applied to chemical data from two underground storage systems containing LPG to assess the usefulness of such technique at the initial stage (Pyeongtaek) or middle stage (Ulsan) of hydrochemical studies. For the first case, both natural and anthropogenic contamination characterize regional groundwater. Saline water buffered by Namyang lake affects as a natural factor, whereas cement grouting influence as an artificial factor. For the second study area, contaminations due to operation of LPG caverns, such as disinfection activity and cement grouting effect, deteriorate groundwater quality. This study indicates that principal component analysis would be particularly useful for summarizing large data set for the purpose of subsurface characterization, assessing their vulnerability to contamination and protecting recharge zones.

  • PDF

Evaluation of Slope Condition using Principal Component Analysis (주성분분석법을 이용한 사면 상태 평가)

  • Jung, Soo-Jung;Kim, Tae-Hyung;Kang, Ki-Min;Lee, Young-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.416-422
    • /
    • 2010
  • Estimating condition of geotechnical structures are difficult because of nonlinear time dependency and seasonal effects. Measuring data of structure failure is highly variable in time and space, and a unique approach cannot be defined to model structure movements. Characteristics of movements are obtained by using a statistical method called Principal Component Analysis(PCA). The PCA is a non-parametric method to separate unknown, statistically uncorrelated source processes from observed mixed processes. Instead, since the "best" mathematical relationship is estimated for given data sets of the input and output measured from target systems. As a consequence, this method is advantageous in modeling systems whose geomechanical properties are unknown or difficult to be measured.

  • PDF