Jo, Ji Eun;Lee, A Yeong;Kim, Hyo Seon;Moon, Byeong Cheol;Choi, Goya;Ji, Yunui;Kim, Ho Kyoung
The Korea Journal of Herbology
/
v.28
no.5
/
pp.95-101
/
2013
Objectives : A quantitative method using high performance liquid chromatography with a photodiode array detector(HPLC-PDA) was established for the quantitative analysis of the four main compound and pattern analysis to classification Piiellia ternate, P. pedatisecta and Typhonium flagelliforme. Methods : The analytical procedure for the determination of P. ternata, together with the known main compounds uracil, uridine, guanosine and adenosine was established. Optimum HPLC-PDA separation of these P. ternata was possible on Luna C18(2) column material, using water and acetonitrile as mobile phase. The method was validated according to regulatory guidelines. In addition, this assay method were analyzed for the content of four main compound in P. ternata, P. pedatisecta and T. flagelliforme and by data obtained from the HPLC-PDA analysis was performed principal component analysis(PCA). Results : Validation results indicated that the HPLC method is well suited for the determination of the roots of P. ternata with a good linearity ($r^2$ > 0.999), precision and recovery rates. Analysis of HPLC-PDA, the average content of uracil, uridine, guanosine and adenosine was significantly higher in P. ternate>P. pedatisecta> T. flagelliforme order. The application of PCA to main compound data by HPLC-PDA permitted the effective discrimination among the three species. Conclusions : Analysis of both HPLC-PDA and PCA confirmed the fact that four main compound and pattern profiles of P. ternata, P. pedatisecta and T. flagelliforme were different from each other.
Journal of the Institute of Electronics Engineers of Korea SC
/
v.47
no.6
/
pp.12-18
/
2010
Automatic Target Detection (ATD) systems that use forward-looking infrared (FLIR) consists of three stages. preprocessing, detection, and clutter rejection. All potential targets are extracted in preprocessing and detection stages. But, this results in a high false alarm rates. To reduce false alarm rates of ATD system, true targets are extracted in the clutter rejection stage. This paper focuses on clutter rejection stage. This paper presents a new clutter rejection technique using PCA features and stochastic features of clutters and targets. PCA features are obtained from Euclidian distances using which potential targets are projected to reduced eigenspace selected from target eigenvectors. CV is used for calculating stochastic features of edges in targets and clutters images. To distinguish between target and clutter, LDA (Linear Discriminant Analysis) is applied. The experimental results show that the proposed algorithm accurately classify clutters with a low false rate compared to PCA method or CV method
In recent years, there has been a growing recognition of the important role that long non-coding RNAs (lncRNAs) play in the immunological process of hepatocellular carcinoma (LIHC). An increasing number of studies have shown that certain lncRNAs hold great potential as viable options for diagnosis and treatment in clinical practice. The primary objective of our investigation was to devise an immune lncRNA profile to explore the significance of immune-associated lncRNAs in the accurate diagnosis and prognosis of LIHC. Gene expression profiles of LIHC samples obtained from TCGA database were screened for immune-related genes. The optimal immune-related lncRNA signature was built via correlational analysis, univariate and multivariate Cox analysis. Then, the Kaplan-Meier plot, ROC curve, clinical analysis, gene set enrichment analysis, and principal component analysis were performed to evaluate the capability of the immune lncRNA signature as a prognostic indicator. Six long non-coding RNAs were identified via correlation analysis and Cox regression analysis considering their interactions with immune genes. Subsequently, tumor samples were categorized into two distinct risk groups based on different clinical outcomes. Stratification analysis indicated that the prognostic ability of this signature acted as an independent factor. The Kaplan-Meier method was employed to conduct survival analysis, results showed a significant difference between the two risk groups. The predictive performance of this signature was validated by principal component analysis (PCA). Additionally, data obtained from gene set enrichment analysis (GSEA) revealed several potential biological processes in which these biomarkers may be involved. To summarize, this study demonstrated that this six-lncRNA signature could be identified as a potential factor that can independently predict the prognosis of LIHC patients.
Volatile components of six commercial $sauces(A{\sim}F)$ and $\hat{O}yuk-jang$(G, H), a Korean traditional fermented sauce, were analyzed by electronic nose based on GC with surface acoustic wave(SAW) sensor. The obtained data were used for pattern recognition and a visual pattern called a $VaporPrint^{TM}$, derived from the frequency and chromatogram of the GC-SAW sensor. Volatile components of sauces and $\hat{O}yuk-jang$ were well discriminated with the direct use of $VaporPrint^{TM}$. Commercial sauces and $\hat{O}yuk-jang$ showed different volatile patterns, respectively, due to different major material, which meju, beef extract, pickled anchovies, and Katsuobushi were used. Volatile components of Oyuk-jang were decreased drastically during the fermentation time. After boiling $\hat{O}yuk-jang$, new several peaks were found. The responses by electronic nose were used for principal component analysis. The PCA plot showed that volatile components pattern were well discriminated by first principal component score(proportion: 96.8%), and first principal component score of $\hat{O}yuk-jang$ was between soy sauce of the liquid extracted from beef and sauce of pickled anchovies.
In speech corpus generation and speech recognition, it is sometimes needed to segment the input speech data without any prior knowledge. A method to accomplish this kind of segmentation, often called as blind segmentation, or acoustic segmentation, is to find boundaries which minimize the Euclidean distances among the feature vectors of each segments. However, the use of this metric alone is prone to errors because of the fluctuations or variations of the feature vectors within a segment. In this paper, we introduce the principal component analysis method to take the trend of feature vectors into consideration, so that the proposed distance measure be the distance between feature vectors and their projected points on the principal components. The proposed distance measure is applied in the LBDP(level building dynamic programming) algorithm for an experimentation of continuous speech segmentation. The result was rather promising, resulting in 3-6% reduction in deletion rate compared to the pure Euclidean measure.
Jo, Ahra;Park, Jeong-Sik;Seo, Yong-Ho;Jang, Gil-Jin
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.13
no.2
/
pp.157-163
/
2013
In this paper, we propose a human detection technique using thermal imaging camera. The proposed method is useful at night or rainy weather where a visible light imaging cameras is not able to detect human activities. Under the observation that a human is usually brighter than the background in the thermal images, we estimate the preliminary human regions using the statistical confidence measures in the gray-level, brightness histogram. Afterwards, we applied Gaussian filtering and blob labeling techniques to remove the unwanted noise, and gather the scattered of the pixel distributions and the center of gravities of the blobs. In the final step, we exploit the aspect ratio and the area on the unified object region as well as a number of the principal components extracted from the object region images to determine if the detected object is a human. The experimental results show that the proposed method is effective in environments where visible light cameras are not applicable.
Proceedings of the Korean Society of Crop Science Conference
/
2017.06a
/
pp.83-83
/
2017
The National Agrobiodiversity Center (NAS, RDA, Republic of Korea) has continually collected new valuable genetic resources. In this study, we regenerated conserved kidney bean (Phaseolus vulgaris L.) germplasm which couldn't be available because of seed quantity and quality, and we also surveyed their morphological characters for the sustainable utilization. A total of 431 kidney bean accessions were regenerated and 18 morphological traits were surveyed according to the characterization guideline of RDA Genebank. Among the surveyed traits, flowering time ranged from May 23 to September 4 and 73.8% of tested accessions were mainly flowering in June. The maturity time ranged from July 1 to October 15 and main flowering time was July (91.4%). For plant type, 270 accs (62.6%) were climbing type followed by medium type of 86 accs (20.0%) and dwarf type of 65 accs (15.1%). The seed coat colors were various; yellow (34.6%), white (22.3%), brown (17.9%), red (10.7%), black (5.8%), violet (11%), pink (1.4%), navy (0.9%). Principal component analysis indicated that five principal components (PCs) with Eigen values >1 accounted for more than 65.8% variability. The first PC was more related to growth habits such as growth type, flowering time, and plant type. The second and third PCs showed higher values of the pigment characters such as seed coat color, flower color, and pod color. In fourth and fifty PCs, there were the higher positive values of the pod shapes. Our results provided insight into the characteristics kidney beans, thus the utilization basis of kidney beans might be elevated for bio-industry.
This paper introduces the development of a transient monitoring system to detect the early stage of a transient, to identify the type of the transient scenario, and to inform an operator with the remaining time to turbine trip when there is no operator's relevant control. This study focused on the transients originating from a secondary system in nuclear power plants (NPPs), because the secondary system was recognized to be a more dominant factor to make unplanned turbine-generator trips which can ultimately result in reactor trips. In order to make the proposed methodology practical forward, all the transient scenarios registered in a simulator of a 1,000 MWe pressurized water reactor were archived in the transient pattern database. The transient patterns show plant behavior until turbine-generator trip when there is no operator's intervention. Meanwhile, the operating data periodically captured from a plant computer is compared with an individual transient pattern in the database and a highly matched section among the transient patterns enables isolation of the type of transient and prediction of the expected remaining time to trip. The transient pattern database consists of hundreds of variables, so it is difficult to speedily compare patterns and to draw a conclusion in a timely manner. The transient pattern database and the operating data are, therefore, converted into a smaller dimension using the principal component analysis (PCA). This paper describes the process of constructing the transient pattern database, dealing with principal components, and optimizing similarity measures.
The volatile composition of veal has yet to be reported and is one of the important factors determining meat character and quality. To identify the most important aroma compounds in veal from Holstein bull calves fed one of three diets, samples were subjected to solid-phase microextraction (SPME) combined with gas chromatography-quadrupole mass spectrometry (GC-MS). Most of the important odorants were aldehydes and alcohols. For group A (veal calves fed entirely on milk for 90 d before slaughter), the most abundant compound class was the aldehydes (52.231%), while that was alcohols (26.260%) in group C (veal calves fed starter diet for at least 60 d before slaughter). In both classes the absolute percentages of the volatile compounds in veal were different indicating that the veal diet significantly (p<0.05) affected headspace volatile composition in veal as determined by principal component analysis (PCA). Twenty three volatile compounds showed significance by using a partial least-squared discriminate analysis (PLS-DA) (VIP>1). The establishment of the global volatile signature of veal may be a useful tool to define the beef diet that improves the organoleptic characteristics of the meat and consequently impacts both its taste and economic value.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.10
no.8
/
pp.3865-3883
/
2016
Infrastructure as a Service (IaaS) encapsulates computer hardware into a large amount of virtual and manageable instances mainly in the form of virtual machine (VM), and provides rental service for users. Currently, VM anomaly incidents occasionally occur, which leads to performance issues and even downtime. This paper aims at detecting anomalous VMs based on performance metrics data of VMs. Due to the dynamic nature and increasing scale of IaaS, detecting anomalous VMs from voluminous correlated and non-Gaussian monitored performance data is a challenging task. This paper designs an anomaly detection framework to solve this challenge. First, it collects 53 performance metrics to reflect the running state of each VM. The collected performance metrics are testified not to follow the Gaussian distribution. Then, it employs independent components analysis (ICA) instead of principal component analysis (PCA) to extract independent components from collected non-Gaussian performance metric data. For anomaly detection, it employs multi-class Bayesian classification to determine the current state of each VM. To evaluate the performance of the designed detection framework, four types of anomalies are separately or jointly injected into randomly selected VMs in a campus-wide testbed. The experimental results show that ICA-based detection mechanism outperforms PCA-based and LDA-based detection mechanisms in terms of sensitivity and specificity.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.