Horticultural traits and genetic relationship were evaluated for 83 melon (Cucumis melo L.) cultivars. Survey of a total of 36 characteristics for seedling, leaf, stem, flower, fruit, and seed and subsequent multiple analysis of variance (MANOVA) were conducted. Principal component analysis (PCA) showed that 8 principle components including fruit weight, fruit length, fruit diameter, cotyledon length, seed diameter, and seed length accounted for 76.3% of the total variance. Cluster analysis of the 83 melon cultivars using average linkage method resulted in 5 clusters at coefficient of 0.7. Cluster I consisted of cultivars with high values for fruit-related traits, Cluster II for soluble solid content, and Cluster V for high ripening rate. Genotyping of the 83 cultivars was conducted using 15 expressed-sequence tagged-simple sequence repeat (EST-SSR) from the Cucurbit Genomics Initiative (ICuGI) database. Analysis of genetic relatedness by UPGMA resulted in 6 clusters. Mantel test indicated that correlation between morphological and genetic distance was very low (r = -0.11).
Journal of the Institute of Electronics Engineers of Korea SP
/
v.47
no.3
/
pp.54-60
/
2010
The local appearance-based method is one of the face recognition methods that divides face image into small areas and extracts features from each area of face image using statistical analysis. It collects classification results of each area and decides identity of a face image using a voting scheme by integrating classification results of each area of a face image. The conventional local appearance-based method divides face images into small pieces and uses all the pieces in recognition process. In this paper, we propose a local appearance-based method that makes use of only the relatively important facial components. The proposed method detects the facial components such as eyes, nose and mouth that differs much from person to person. In doing so, the proposed method detects exact locations of facial components using support vector machines (SVM). Based on the detected facial components, a number of small images that contain the facial parts are constructed. Then it extracts features from each facial component image using principal components analysis (PCA). We compared the performance of the proposed method to those of the conventional methods. The results show that the proposed method outperforms the conventional local appearance-based method while preserving the advantages of the conventional local appearance-based method.
Farkoushi, Mohammad Gholami;Choi, Yoonjo;Hong, Seunghwan;Bae, Junsu;Sohn, Hong-Gyoo
Korean Journal of Remote Sensing
/
v.36
no.5_3
/
pp.1067-1076
/
2020
In this paper, an unsupervised saliency guided change detection method using UAV and aerial imagery is proposed. Regions that are more different from other areas are salient, which make them more distinct. The existence of the substantial difference between two images makes saliency proper for guiding the change detection process. Change Vector Analysis (CVA), which has the capability of extracting of overall magnitude and direction of change from multi-spectral and temporal remote sensing data, is used for generating an initial difference image. Combined with an unsupervised CVA and the saliency, Principal Component Analysis(PCA), which is possible to implemented as the guide for change detection method, is proposed for UAV and aerial images. By implementing the saliency generation on the difference map extracted via the CVA, potentially changed areas obtained, and by thresholding the saliency map, most of the interest areas correctly extracted. Finally, the PCA method is implemented to extract features, and K-means clustering is applied to detect changed and unchanged map on the extracted areas. This proposed method is applied to the image sets over the flooded and typhoon-damaged area and is resulted in 95 percent better than the PCA approach compared with manually extracted ground truth for all the data sets. Finally, we compared our approach with the PCA K-means method to show the effectiveness of the method.
Objective: This research was conducted to study the genetic diversity in several Indonesian cattle breeds using microsatellite markers to classify the Indonesian cattle breeds. Methods: A total of 229 DNA samples from of 10 cattle breeds were used in this study. The polymerase chain reaction process was conducted using 12 labeled primers. The size of allele was generated using the multiplex DNA fragment analysis. The POPGEN and CERVUS programs were used to obtain the observed number of alleles, effective number of alleles, observed heterozygosity value, expected heterozygosity value, allele frequency, genetic differentiation, the global heterozygote deficit among breeds, and the heterozygote deficit within the breed, gene flow, Hardy-Weinberg equilibrium, and polymorphism information content values. The MEGA program was used to generate a dendrogram that illustrates the relationship among cattle population. Bayesian clustering assignments were analyzed using STRUCTURE program. The GENETIX program was used to perform the correspondence factorial analysis (CFA). The GENALEX program was used to perform the principal coordinates analysis (PCoA) and analysis of molecular variance. The principal component analysis (PCA) was performed using adegenet package of R program. Results: A total of 862 alleles were detected in this study. The INRA23 allele 205 is a specific allele candidate for the Sumba Ongole cattle, while the allele 219 is a specific allele candidate for Ongole Grade. This study revealed a very close genetic relationship between the Ongole Grade and Sumba Ongole cattle and between the Madura and Pasundan cattle. The results from the CFA, PCoA, and PCA analysis in this study provide scientific evidence regarding the genetic relationship between Banteng and Bali cattle. According to the genetic relationship, the Pesisir cattle were classified as Bos indicus cattle. Conclusion: All identified alleles in this study were able to classify the cattle population into three clusters i.e. Bos taurus cluster (Simmental Purebred, Simmental Crossbred, and Holstein Friesian cattle); Bos indicus cluster (Sumba Ongole, Ongole Grade, Madura, Pasundan, and Pesisir cattle); and Bos javanicus cluster (Banteng and Bali cattle).
The knowledge discovery from web has been studied in many researches. There are some difficulties using web log for training data on efficient information predictive models. In this paper, we studied on the method to eliminate sparseness from web log data and to perform web user clustering. Using missing value imputation by Bayesian inference of MCMC, the sparseness of web data is removed. And web user clustering is performed using self organizing maps based on 3-D plot by principal component. Finally, using KDD Cup data, our experimental results were shown the problem solving process and the performance evaluation.
Background: A unique framework for performance optimization of generation companies (GENCOs) based on health, safety, environment, and ergonomics (HSEE) indicators is presented. Methods: To rank this sector of industry, the combination of data envelopment analysis (DEA), principal component analysis (PCA), and Taguchi are used for all branches of GENCOs. These methods are applied in an integrated manner to measure the performance of GENCO. The preferred model between DEA, PCA, and Taguchi is selected based on sensitivity analysis and maximum correlation between rankings. To achieve the stated objectives, noise is introduced into input data. Results: The results show that Taguchi outperforms other methods. Moreover, a comprehensive experiment is carried out to identify the most influential factor for ranking GENCOs. Conclusion: The approach developed in this study could be used for continuous assessment and improvement of GENCO's performance in supplying energy with respect to HSEE factors. The results of such studies would help managers to have better understanding of weak and strong points in terms of HSEE factors.
$^1H$ nuclear magnetic resonance (NMR) spectroscopy of biological samples has been proven to be an effective and nondestructive approach to probe drug toxicity within an organism. In this study, ketoprofen toxicity was investigated using $^1H$-NMR spectroscopy coupled with multivariate statistical analysis. Histopathologic test of ketoprofen-induced acute gastrointestinal damage in rats demonstrated a significant dose-dependent effect. Furthermore, principal component analysis (PCA) derived from $^1H$-NMR spectra of urinary samples showed clear separation between the vehicle-treated control and ketoprofen-treated groups. Moreover, PCA derived from endogenous metabolite concentrations through targeted profiling revealed a dose-dependent metabolic shift between the vehicle-treated control, low-dose ketoprofen-treated (10 mg/kg body weight), and high-dose ketoprofen-treated (50 mg/kg) groups coinciding with their gastric damage scores after ketoprofen administration. The resultant metabolic profiles demonstrated that the ketoprofen-induced gastric damage exhibited energy metabolism perturbations that increased urinary levels of citrate, cis-aconitate, succinate, and phosphocreatine. In addition, ketoprofen administration induced an enhancement of xenobiotic activity in fatty oxidation, which caused increase levels of N-isovalerylglycine, adipate, phenylacetylglycine, dimethylamine, betaine, hippurate, 3-indoxylsulfate, N,N-dimethylglycine, trimethyl-N-oxide, and glycine. These findings demonstrate that $^1H$-NMR-based urinary metabolic profiling can be used for noninvasive and rapid way to diagnose adverse drug effects and is suitable for explaining the possible biological pathways perturbed by nonsteroidal anti-inflammatory drug toxicity.
Ahn, Myung Suk;Park, Pue Hee;Kwon, Young Nam;Mekapogu, Manjulatha;Kim, Suk Weon;Jie, Eun Yee;Jeong, Jae Ah;Park, Jong Taek;Kwon, Oh Keun
Korean Journal of Plant Resources
/
v.31
no.6
/
pp.641-651
/
2018
Floral scents and metabolites from cut flowers of 14 peony cultivars (Paeonia lactiflora Pall.) were analyzed to discriminate different cultivars and to compare the Korean cultivar with the other cut peonies imported to Korea using electronic nose (E-nose) and Fourier transform infrared (FT-IR) spectroscopy combined with multivariate analysis, respectively. Principal component analysis (PCA) and discriminant function analysis (DFA) dendrogram of peony floral scents were not precisely same but there were 3 groups including same cultivars. PCA and partial least squares-discriminant analysis (PLS-DA) dendrograms of peony metabolites showed that different cut peony cultivars were clustered into two major groups including same cultivars. Fragrance pattern of Korean 'Taebaek' was classified to same group with 'Jubilee' on the PCA and DFA results and its metabolite pattern was clearly discriminated by the PCA and PLS-DA compared to the other cultivars. These results show that the 14 peony cut flowers could be discriminated corresponding to their chemical relationship and the metabolic profile of Korean 'Taebaek' has distinctive characteristics. Furthermore, we suggest that these results could be used as the preliminary data for breeding new cut peony cultivars and for improving the availability of Korean cut peony in cosmetic industry.
The number of variables exceeds the number of samples in microarray data. We propose a nonparametric local linear logistic classification procedure using orthogonal components for classifying high-dimensional microarray data. The proposed method is based on the local likelihood and can be applied to multi-class classification. We applied the local linear logistic classification method using PCA, PLS, and factor analysis components as new features to Leukemia data and colon data, and compare the performance of the proposed method with the conventional statistical classification procedures. The proposed method outperforms the conventional ones for each component, and PLS has shown best performance when it is embedded in the proposed method among the three orthogonal components.
Seo, Kyeong-Jin;Kim, Ju-Mi;Kim, Min-Jung;Kim, Seong-Keun;Lee, Ji-Eun;Kim, In-Young;Zoh, Kyung-Duk;Ko, Gwang-Pyo
Journal of Environmental Health Sciences
/
v.35
no.6
/
pp.517-525
/
2009
The water quality of Lake Shihwa had been rapidly deteriorating since 1994 due to wastewater input from the watersheds, limited water circulation and the lack of a wastewater treatment policy. In 2000, the government decided to open the tidal embankment and make a comprehensive management plan to improve the water quality, especially inflowing stream water around Shihwa and Banwol industrial complex. However, the water quality and microbial community have not as yet been fully evaluated. The purpose of this study is to investigate the influent water quality around the industrial area based on chemical and biological analysis, and collected surface water sample from the Siheung Stream, up-stream to down-stream through the industrial complex, Samples were collected in July 2009. The results show that the downstream site near the industrial complex had higher concentrations of heavy metals (Cu, Mn, Fe, Mg, and Zn) and organic matter than upstream sites. A combination of DGGE (Denaturing Gradient Gel Electrophoresis) gels, lists of K-WQI (Korean Water Quality Index), cluster analysis, MDS (Multi-Dimensional Scaling) and PCA (Principal Component Analysis) has demonstrated clear clustering between Siheung stream 3 and 4 and with a high similarity and detected metal reducing bacteria (Shewanella spp.) and biodegrading bacteria (Acinetobacter spp.). These results suggest that use of both chemical and microbiological marker would be useful to fully evaluate the water quality.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.