• Title/Summary/Keyword: PCA(Principal Component Analysis

Search Result 1,243, Processing Time 0.029 seconds

Design of Two-Dimensional Robust Face Recognition System Realized with the Aid of Facial Symmetry with Illumination Variation (얼굴의 대칭성을 이용하여 조명 변화에 강인한 2차원 얼굴 인식 시스템 설계)

  • Kim, Jong-Bum;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.1104-1113
    • /
    • 2015
  • In this paper, we propose Two-Dimensional Robust Face Recognition System Realized with the Aid of Facial Symmetry with Illumination Variation. Preprocessing process is carried out to obtain mirror image which means new image rearranged by using difference between light and shade of right and left face based on a vertical axis of original face image. After image preprocessing, high dimensional image data is transformed to low-dimensional feature data through 2-directional and 2-dimensional Principal Component Analysis (2D)2PCA, which is one of dimensional reduction techniques. Polynomial-based Radial Basis Function Neural Network pattern classifier is used for face recognition. While FCM clustering is applied in the hidden layer, connection weights are defined as a linear polynomial function. In addition, the coefficients of linear function are learned through Weighted Least Square Estimation(WLSE). The Structural as well as parametric factors of the proposed classifier are optimized by using Particle Swarm Optimization(PSO). In the experiment, Yale B data is employed in order to confirm the advantage of the proposed methodology designed in the diverse illumination variation

Fast Eye-Detection Algorithm for Embedded System (임베디드시스템을 위한 고속 눈검출 알고리즘)

  • Lee, Seung-Ik
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.12 no.4
    • /
    • pp.164-168
    • /
    • 2007
  • In this paper, we propose the eye detection algorithms which can apply to the Real-Time Embedded systems. To detect the eye region, the feature vectors are obtained at the first step and then, PCA(Principal Component Analysis) and amplitude projection method is applied to composite the feature vectors. In the decision state, the estimated probability density functions (PDFs) are applied by the proposed Bayesian method to detect eye region in an image from the CCD camera. The simulation results show that our proposed method has a good detection rate on the frontal face and this can be applied to the embedded system because of its small amount of the mathematical complexity.

  • PDF

Fault Detection and Classification with Optimization Techniques for a Three-Phase Single-Inverter Circuit

  • Gomathy, V.;Selvaperumal, S.
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1097-1109
    • /
    • 2016
  • Fault detection and isolation are related to system monitoring, identifying when a fault has occurred, and determining the type of fault and its location. Fault detection is utilized to determine whether a problem has occurred within a certain channel or area of operation. Fault detection and diagnosis have become increasingly important for many technical processes in the development of safe and efficient advanced systems for supervision. This paper presents an integrated technique for fault diagnosis and classification for open- and short-circuit faults in three-phase inverter circuits. Discrete wavelet transform and principal component analysis are utilized to detect the discontinuity in currents caused by a fault. The features of fault diagnosis are then extracted. A fault dictionary is used to acquire details about transistor faults and the corresponding fault identification. Fault classification is performed with a fuzzy logic system and relevance vector machine (RVM). The proposed model is incorporated with a set of optimization techniques, namely, evolutionary particle swarm optimization (EPSO) and cuckoo search optimization (CSO), to improve fault detection. The combination of optimization techniques with classification techniques is analyzed. Experimental results confirm that the combination of CSO with RVM yields better results than the combinations of CSO with fuzzy logic system, EPSO with RVM, and EPSO with fuzzy logic system.

The Identification of Blended Sesame Oils by Electronic Nose (전자코를 이용한 혼합 참기름의 판별 연구)

  • Shin, Jung-Ah;Lee, Ki-Teak
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.648-652
    • /
    • 2003
  • Precise and rapid method out for distinguishing blended sesame oils through the electronic nose analysis was developed. Sesame oil was blended with corn oil at the ratio of 95 : 5, 90: 10, and 80 : 20 (w/w), respectively. Samples were then analyzed by gas chromatography, SPME-GC/MS, and the electronic nose composed of 12 different metal oxide sensors. Sensitivities $(delta\;R_{gas}/R_{air})$ of sensors from electronic nose were analyzed by principal component analysis (PCA). Proportion of the first principal component was 98.76%.

Seabed Sediment Classification Algorithm using Continuous Wavelet Transform

  • Lee, Kibae;Bae, Jinho;Lee, Chong Hyun;Kim, Juho;Lee, Jaeil;Cho, Jung Hong
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.2 no.4
    • /
    • pp.202-208
    • /
    • 2016
  • In this paper, we propose novel seabed sediment classification algorithm using feature obtained by continuous wavelet transform (CWT). Contrast to previous researches using direct reflection coefficient of seabed which is function of frequency and is highly influenced by sediment types, we develop an algorithm using both direct reflection signal and backscattering signal. In order to obtain feature vector, we employ CWT of the signal and obtain histograms extracted from local binary patterns of the scalogram. The proposed algorithm also adopts principal component analysis (PCA) to reduce dimension of the feature vector so that it requires low computational cost to classify seabed sediment. For training and classification, we adopts K-means clustering algorithm which can be done with low computational cost and does not require prior information of the sediment. To verify the proposed algorithm, we obtain field data measured at near Jeju island and show that the proposed classification algorithm has reliable discrimination performance by comparing the classification results with actual physical properties of the sediments.

Structural damage identification based on genetically trained ANNs in beams

  • Li, Peng-Hui;Zhu, Hong-Ping;Luo, Hui;Weng, Shun
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.227-244
    • /
    • 2015
  • This study develops a two stage procedure to identify the structural damage based on the optimized artificial neural networks. Initially, the modal strain energy index (MSEI) is established to extract the damaged elements and to reduce the computational time. Then the genetic algorithm (GA) and artificial neural networks (ANNs) are combined to detect the damage severity. The input of the network is modal strain energy index and the output is the flexural stiffness of the beam elements. The principal component analysis (PCA) is utilized to reduce the input variants of the neural network. By using the genetic algorithm to optimize the parameters, the ANNs can significantly improve the accuracy and convergence of the damage identification. The influence of noise on damage identification results is also studied. The simulation and experiment on beam structures shows that the adaptive parameter selection neural network can identify the damage location and severity of beam structures with high accuracy.

Synthetic data generation by probabilistic PCA (주성분 분석을 활용한 재현자료 생성)

  • Min-Jeong Park
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.4
    • /
    • pp.279-294
    • /
    • 2023
  • It is well known to generate synthetic data sets by the sequential regression multiple imputation (SRMI) method. The R-package synthpop are widely used for generating synthetic data by the SRMI approaches. In this paper, I suggest generating synthetic data based on the probabilistic principal component analysis (PPCA) method. Two simple data sets are used for a simulation study to compare the SRMI and PPCA approaches. Simulation results demonstrate that pairwise coefficients in synthetic data sets by PPCA can be closer to original ones than by SRMI. Furthermore, for the various data types that PPCA applications are well established, such as time series data, the PPCA approach can be extended to generate synthetic data sets.

Classification of algae in watersheds using elastic shape

  • Tae-Young Heo;Jaehoon Kim;Min Ho Cho
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.3
    • /
    • pp.309-322
    • /
    • 2024
  • Identifying algae in water is important for managing algal blooms which have great impact on drinking water supply systems. There have been various microscopic approaches developed for algae classification. Many of them are based on the morphological features of algae. However, there have seldom been mathematical frameworks for comparing the shape of algae, represented as a planar continuous curve obtained from an image. In this work, we describe a recent framework for computing shape distance between two different algae based on the elastic metric and a novel functional representation called the square root velocity function (SRVF). We further introduce statistical procedures for multiple shapes of algae including computing the sample mean, the sample covariance, and performing the principal component analysis (PCA). Based on the shape distance, we classify six algal species in watersheds experiencing algal blooms, including three cyanobacteria (Microcystis, Oscillatoria, and Anabaena), two diatoms (Fragilaria and Synedra), and one green algae (Pediastrum). We provide and compare the classification performance of various distance-based and model-based methods. We additionally compare elastic shape distance to non-elastic distance using the nearest neighbor classifiers.

Biometrics Based on Multi-View Features of Teeth Using Principal Component Analysis (주성분분석을 이용한 치아의 다면 특징 기반 생체식별)

  • Chang, Chan-Wuk;Kim, Myung-Su;Shin, Young-Suk
    • Korean Journal of Cognitive Science
    • /
    • v.18 no.4
    • /
    • pp.445-455
    • /
    • 2007
  • We present a new biometric identification system based on multi-view features of teeth using principal components analysis(PCA). The multi-view features of teeth consist of the frontal view, the left side view and the right side view. In this paper, we try to stan the foundations of a dental biometrics for secure access in real life environment. We took the pictures of the three views teeth in the experimental environment designed specially and 42 principal components as the features for individual identification were developed. The classification for individual identification based on the nearest neighbor(NN) algorithm is created with the distance between the multi-view teeth and the multi-view teeth rotated. The identification performance after rotating two degree of test data is 95.2% on the left side view teeth and 91.3% on the right side view teeth as the average values.

  • PDF

A Baseline Correction for Effective Analysis of Alzheimer’s Disease based on Raman Spectra from Platelet (혈소판 라만 스펙트럼의 효율적인 분석을 위한 기준선 보정 방법)

  • Park, Aa-Ron;Baek, Sung-June
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.1
    • /
    • pp.16-22
    • /
    • 2012
  • In this paper, we proposed a method of baseline correction for analysis of Raman spectra of platelets from Alzheimer's disease (AD) transgenic mice. Measured Raman spectra include the meaningful information and unnecessary noise which is composed of baseline and additive noise. The Raman spectrum is divided into the local region including several peaks and the spectrum of the region is modeled by curve fitting using Gaussian model. The additive noise is clearly removed from the process of replacing the original spectrum with the fitted model. The baseline correction after interpolating the local minima of the fitted model with linear, piecewise cubic Hermite and cubic spline algorithm. The baseline corrected models extract the feature with principal component analysis (PCA). The classification result of support vector machine (SVM) and maximum $a$ posteriori probability (MAP) using linear interpolation method showed the good performance about overall number of principal components, especially SVM gave the best performance which is about 97.3% true classification average rate in case of piecewise cubic Hermite algorithm and 5 principal components. In addition, it confirmed that the proposed baseline correction method compared with the previous research result could be effectively applied in the analysis of the Raman spectra of platelet.