The development of high-speed rail (HSR) has had a major impact on the power supply grid. Based on the monitored waveforms of HSR, a pattern recognition approach is proposed for the first time in this paper to identify the operating conditions. To reduce the data dimensions for monitored waveforms, the principal component analysis (PCA) algorithm was used to extract the characteristics and their waveforms from the monitored waveforms data. The dynamic time wrapping (DTW) algorithm was then used to identify the operating conditions of the HSR. Cases studies show that the proposed approach is effective and feasible, and that it is possible to identify the real-time operating conditions based on the monitored waveforms.
To describe the major environmental factors operating in coastal wetland and to characterize the distribution of the plant species over the wetland in relation to the major environmental gradients, 12 soil physical and chemical properties were determined. The gradient of water and osmotic potential of soil, electrical conductivity, sodium and chloride content and soil texture alsong the three habitat types of salt marshes, salt swamp and sand dune were occurred. The 24 coastal plant communities from principal component analysis (PCA) on the 12 variables were at designated as a gradient for soil texture and water potential related with salinity by Axis I and as a gradient for soil moisture and total nitrogen gradient by Axis II On Axis I were divided into 3 groups (1) 9 salt marsh communities including Salicornia herbacea communities (2) 5 salt swamp communities including Scirpus fluviatilis communities and (3) 10 sand dune communities including Jmperata cylindrica communities on Axis II were divided into 2 groups (1) salt marsh and sand dune communities, and (2) 3 salt swamp communities. The results could account for the zonation of plant communities on coastal wetland observed alsong envionmental gradients.
When we search database with a query image, the retrieval efficiency will vary from each kind of descriptor. Even the best representative descriptor, it results a few useless images that don't match with query image. This type of error can be reduced by adopting another descriptor which extracts features in different way. At present, the choice of descriptors is base on intuitive and experimental method. By theoretic accessing to the problem of descriptor choice, we can solve the given problem in the objective and rational way. In this study, we intend to make a composite of descriptors that can reduce retrieval error by adopting principal component analysis.
Proceedings of the Korea Contents Association Conference
/
2005.05a
/
pp.437-442
/
2005
본 연구에서는 칼라정보와 주성분분석법(principal component analysis : PCA)를 이용한 차량 번호판 인식시스템을 구성하였다. 먼저 입력된 차량 영상에서 번호판의 형태적 특징과 녹색 칼라 정보를 이용하여 번호판 영역을 추출하였으며, 추출된 번호판내의 문자 및 숫자의 위치적 특징을 이용하여 번호판의 종류(구형, 신형, 최신형)를 구분하였다. 이렇게 추출되고 구분된 번호판은 문자의 상대적 위치정보와 수평 및 수직 투영 정보를 함께 이용하여 각각의 문자영역을 분리 추출하였다. 추출된 문자영역은 주성분분석법을 이용하여 고유벡터를 추출한 후 문자 인식에 사용하였다. 본 논문의 실험과정에서는 다양한 시간대 환경에서 촬영된 주행 중인 자동차 320대의 자가용 차량영상에 대하여 실험하였으며 높은 번호판 추출률과 번호판종류 구분률 그리고 문자 인식률을 얻을 수 있었다.
본 논문에서는 카메라가 장착된 2 족 보행 로봇을 이용한 얼굴 검출 및 추적 시스템을 제안한다. 제안된 시스템은 PCA(Principal Component Analysis) 기반의 시스템으로서 얼굴을 검출하기 위해 먼저, 스킨칼라 정보와 모션 정보를 사용하고, 그 이후에 PCA 를 사용하여 스킨칼라 영역에서 실제 얼굴이 있는지를 검증 한다. 새로 검출된 얼굴과 이전에 추적되는 얼굴 사이의 동일성은 Eigenspace 상에서의 Euclidian distance 를 사용하여 검증한다. 2 족 보행 로봇이 얼굴을 추적하기 위해서는, 검출된 얼굴 영역이 카메라 스크린 중심 영역에 계속 유지되도록 로봇의 움직임을 조절해 간다. 제안된 시스템은 움직임이 많고, 조명 변화나 배경의 변화가 심한 환경에서도, 얼굴을 잘 검출하고 추적 하였으며, 다른 2 족 보행 시스템이나 인간과 로봇의 상호작용을 위한 제스처 인식 시스템으로의 확장도 가능하다.
Park, Sang-Yong;Lee, Chang-Woo;Lee, Yun-Chul;Kim, Hang-Jun
Annual Conference of KIPS
/
2002.04a
/
pp.717-720
/
2002
본 논문은 주성분분석(Principal Component Analysis, PCA)을 통하여 실시간 얼굴 검출 및 추적 방법을 제안한다. 제안된 방법은 얼굴 영역 검출과 추적의 두 단계로 구성되어 있다. 검출 단계에서는 피부색깔 모델과 움직임 정보를 이용하여 얼굴 후보 영역들을 검출하고, 검출된 후보 영역들을 주성분 분석을 통하여 검증한다. 추적 단계에서는 검출된 얼굴들 중에서 현재 추적 중인 얼굴과 가장 유사한 얼굴을 찾아 전체 영상의 중심에 위치하도록 pan/tilt 위에 놓여진 카메라를 제어하여 추적한다. 제안된 방법은 잡음이 많은 배경 상황에서도 존은 실험 결과를 보여준다.
본 논문에서는 얼굴 인식의 성능을 효율적으로 향상시키기 위하여 Discrete Cosine Transform (DCT)와 Principal Component Analysis(PCA)에 기반한 새로운 특징 추출 방법을 제안한다. 얼굴 영상의 공간 영역은 DCT를 이용하여 주파수 영역으로 변환되며, DCT 도메인에서 얼굴 영상이 갖는 고유한 주파수 특성을 최적화 하는 주파수 밴드 영역을 추출한다. 차원이 축소된 데이터는 PCA 를 이용하여 데이터의 변별력에 가장 적합한 얼굴의 특징을 추출하고 Nearest Neighbor Classification 을 통해 본인여부를 확인 한다. 실험 결과 제안된 방법은 데이터의 차원을 효과적으로 축소하면서 기존의 얼굴 인식 방법에 비해 높은 인식률 향상을 보였다.
플라즈마 공정은 집적회로 제작을 위한 미세 박막의 증착과 패턴닝에 핵심적으로 이용되고 있다. 본 연구에서는 플라즈마공정감시와 제어에 응용될 수 있는 모델을 제안한다. 본 모델은 광방사분광기 (Optical emission spectroscopy-OES)정보와 역전파 신경망을 이용해서 개발하였다. 제안된 기법은 Oxide 식각공정에서 수집한 데이터에 적용하였으며, 체계적인 모델링을 위해 공정데이터는 통계적 실험계획법을 적용하여 수집되었다. Raw OES 정보대신, Actinometric OES 정보를 이용하였으며, 신경망의 예측성능은 유전자 알고리즘을 이용해서 증진시켰다. OES의 차수를 줄이기 위해 주인자 분석 (Principal Component Analysis-PCA)을 세 종류의 분산(100, 99, 98%)에 대해서 적용하였다. 최적화한 모델의 예측에러는 323 $\AA/min$이었다. 이전에 PCA를 적용하고 은닉층 뉴런의 함수로 최적화한 모델의 예측에러는 570 $\AA/min$이었으며, 개발된 모델은 이에 비해 43% 증진된 예측 성능을 보이고 있다.
Silicon wafer is one of main materials in solar cell. Micro-cracks in silicon wafer are one of reasons to decrease efficiency of energy transformation. They couldn't be observed by human eye. Also, their shape is not only various but also complicated. Accordingly, their shape classification is absolutely needed for manufacturing process quality and its feedback. The performance of typical classification techniques which is principal component analysis(PCA), neural network, fusion model to integrate PCA with neural network, and support vector machine(SVM), are evaluated using pattern features of micro-cracks. As a result, it has been confirmed that the SVM gives good results in micro-crack classification.
Journal of Institute of Control, Robotics and Systems
/
v.13
no.6
/
pp.513-518
/
2007
In this paper, we propose a fault diagnosis scheme tor induction motor by adopting a hierarchical classifier consisting of k-Nearest Neighbors(k-NN) and Support Vector Machine(SVM). First, some motor conditions are classified by a simple k-NN classifier in advance. And then, more complicated classes are distinguished by SVM. To obtain the normal and fault data, we established an experimental unit with induction motor system and data acquisition module. Feature extraction is performed by Principal Component Analysis(PCA). To show its effectiveness, the proposed fault diagnostic system has been intensively tested with various data acquired under the different electrical and mechanical faults with varying load.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.