• Title/Summary/Keyword: PCA(Principal Component Analysis

Search Result 1,243, Processing Time 0.028 seconds

Quality Characteristics and Antioxidant Activity of Tteokbokkidduk Supplemented with Wheat Bran Powder (밀기울 분말 첨가 떡볶이 떡의 품질 특성 및 항산화 활성)

  • Park, So Young;Sim, Ki Hyeon
    • The Korean Journal of Food And Nutrition
    • /
    • v.35 no.1
    • /
    • pp.16-33
    • /
    • 2022
  • The quality characteristics and antioxidant activity of Tteokbokkidduk alone or supplemented with 3%, 6%, 9%, and 12% wheat bran powder were assessed, to increase use of the wheat bran by-product of wheat milling. The moisture content, pH, and starch elution of Tteokbokkidduk increased with increasing wheat bran powder, while the water absorption rate did not. The L color value decreased and the a and b values increased with increasing wheat bran powder. Scanning electron microscopy of Tteokbokkidduk prepared with 0% and 3% wheat bran powder revealed uniform pore size distribution. In terms of texture profile analysis, hardness and chewiness increased, while cohesiveness decreased with increased content of wheat bran powder. Acceptance was highest for samples with 6% wheat bran powder. Quantitative description analysis (QDA) revealed increased brownness, roughness, nutty, bitterness, astringency, savory character, and hardness, and decreased adhesiveness, springiness, and chewiness with increased wheat bran powder. Principal component analysis (PCA) revealed highest overall acceptance of samples prepared with 6% wheat bran powder, reflecting the relatively low values of detrimental sensory characteristics. Antioxidant activities of Tteokbokkidduk increased as wheat bran powder content increased. The addition of 6% wheat bran powder resulted in excellent Tteokbokki in terms of acceptance, quality, and antioxidant activity.

An Optimization Model for Determining the Number of Military Cargo-plane (군용 수송기 소요 산정 최적화 모형)

  • Hee Soo Kim;Moon Gul Lee;Ho Seok Moon;Seong In Hwang
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.4
    • /
    • pp.160-172
    • /
    • 2023
  • In contemporary global warfare, the significance and imperative of air transportation have been steadily growing. The Republic of Korea Air Force currently operates only light and medium-sized military cargo planes, but does not have a heavy one. The current air transportation capability is limited to meet various present and future air transport needs due to lack of performance such as payload, range, cruise speed and altitude. The problem of population cliffs and lack of airplane parking space must also be addressed. These problems can be solved through the introduction of heavy cargo planes. Until now, most studies on the need of heavy cargo plane and increasing air transport capability have focused on the necessity. Some of them suggested specific quantity and model but have not provided scientific evidence. In this study, the appropriate ratio of heavy cargo plane suitable for the Korea's national power was calculated using principal component analysis and cluster analysis. In addition, an optimization model was established to maximize air transport capability considering realistic constraints. Finally we analyze the results of optimization model and compare two alternatives for force structure.

Establishment of rapid discrimination system of leguminous plants at metabolic level using FT-IR spectroscopy with multivariate analysis (FT-IR 스펙트럼 기반 다변량통계분석기법에 의한 두과작물의 대사체 수준 식별체계 확립)

  • Song, Seung-Yeob;Ha, Tae-Joung;Jang, Ki-Chang;Kim, In-Jung;Kim, Suk-Weon
    • Journal of Plant Biotechnology
    • /
    • v.39 no.3
    • /
    • pp.121-126
    • /
    • 2012
  • To determine whether FT-IR spectroscopy combined with multivariate analysis for whole cell extracts can be used to discriminate major leguminous plant at metabolic level, seed extracts of six leguminous plants were subjected to Fourier transform infrared spectroscopy (FT-IR). FT-IR spectral data from seed extracts were analyzed by principal component analysis (PCA), partial least square discriminant analysis (PLS-DA) and hierarchical clustering analysis (HCA). The PCA could not fully discriminate six leguminous plants, however PLS-DA could successfully discriminate six leguminous plants. The hierarchical dendrogram based on PLS-DA separated the six leguminous plants into four branches. The first branch was consisted of all three Vigna species including Vigna radiata var. radiate, Vigna angularis var. angularis and Vigna unguiculata subsp. Unguiculata. Whereas Pisum sativum var. sativum, Glycine max L and Phaseolus vulgaris var. vulgaris were clustered into a separate branch respectively. The overall results showed that metabolic discrimination system were in accordance with known phylogenic taxonomy. Thus we suggested that the hierarchical dendrogram based on PLS-DA of FT-IR spectral data from seed extracts represented the most probable chemotaxonomical relationship between six leguminous plants.

Extraction of MFCC feature parameters based on the PCA-optimized filter bank and Korean connected 4-digit telephone speech recognition (PCA-optimized 필터뱅크 기반의 MFCC 특징파라미터 추출 및 한국어 4연숫자 전화음성에 대한 인식실험)

  • 정성윤;김민성;손종목;배건성
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.6
    • /
    • pp.279-283
    • /
    • 2004
  • In general, triangular shape filters are used in the filter bank when we extract MFCC feature parameters from the spectrum of the speech signal. A different approach, which uses specific filter shapes in the filter bank that are optimized to the spectrum of training speech data, is proposed by Lee et al. to improve the recognition rate. A principal component analysis method is used to get the optimized filter coefficients. Using a large amount of 4-digit telephone speech database, in this paper, we get the MFCCs based on the PCA-optimized filter bank and compare the recognition performance with conventional MFCCs and direct weighted filter bank based MFCCs. Experimental results have shown that the MFCC based on the PCA-optimized filter bank give slight improvement in recognition rate compared to the conventional MFCCs but fail to achieve better performance than the MFCCs based on the direct weighted filter bank analysis. Experimental results are discussed with our findings.

A Study on Face Recognition using DCT/LDA (DCT/LDA 기반 얼굴 인식에 관한 연구)

  • Kim Hyoung-Joon;Jung Byunghee;Kim Whoi-Yul
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.6
    • /
    • pp.55-62
    • /
    • 2005
  • This paper proposes a method to recognize a face using DCT/LDA where LDA is applied to DCT coefficients of an input face image. In the proposed method, SSS problem of LDA due to less number of training data than the size of feature space can be avoided by expressing an input image in low dimensional space using DCT coefficients. In terms of the recognition rate, both the proposed method and the PCA/LDA method have shown almost equal performance while the training time of the proposed method is much shorter than the other. This is because DCT has the fixed number of basis vectors while the property of energy compaction rate is similar to that of PCA. Although depending on the number of coefficients employed for the recognition, the experimental results show that the performance of the proposed method in terms of recognition rate is very comparable to PCA/LDA method and other DCT/LDA methods, and it can be trained 13,000 times faster than PCA/LDA method.

Computer-Aided Diagnosis for Pulmonary Tuberculosis using Texture Features Analysis in Digital Chest Radiography (질감분석을 이용한 폐결핵의 자동진단)

  • Kim, Dae-Hun;Ko, Seong-Jin;Kang, Se-Sik;Kim, Jung-Hoon;Kim, Chang-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.11
    • /
    • pp.185-193
    • /
    • 2011
  • There is no exact standard of detecting pulmonary tuberculosis(TB) in digital image of simple chest radiography. In this study, I experimented on the principal components analysis(PCA) algorithm in the past and suggested six other parameters as identification of TB lesions. The purpose of this study was to develop and test computer aided diagnosis(detection) method for the detection and measurement of pulmonary abnormalities on digital chest radiography. It showed comparatively low recognition diagnosis rate using PCA method, however, six kinds of texture features parameters algorithm showed similar or higher diagnosis rates of pulmonary disease than that of the clinical radiologists. Proposed algorithms using computer-aided of texture analysis can distinguish between areas of abnormality in the chest digital images, differentiate lesions having pulmonary disease. The method could be useful tool for classifying and measuring chest lesions, it would play a major role in radiologist's diagnosis of disease so as to help in pre-reading diagnosis and prevention of pulmonary tuberculosis.

Wafer state prediction in 64M DRAM s-Poly etching process using real-time data (실시간 데이터를 위한 64M DRAM s-Poly 식각공정에서의 웨이퍼 상태 예측)

  • 이석주;차상엽;우광방
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.664-667
    • /
    • 1997
  • For higher component density per chip, it is necessary to identify and control the semiconductor manufacturing process more stringently. Recently, neural networks have been identified as one of the most promising techniques for modeling and control of complicated processes such as plasma etching process. Since wafer states after each run using identical recipe may differ from each other, conventional neural network models utilizing input factors only cannot represent the actual state of process and equipment. In this paper, in addition to the input factors of the recipe, real-time tool data are utilized for modeling of 64M DRAM s-poly plasma etching process to reflect the actual state of process and equipment. For real-time tool data, we collect optical emission spectroscopy (OES) data. Through principal component analysis (PCA), we extract principal components from entire OES data. And then these principal components are included to input parameters of neural network model. Finally neural network model is trained using feed forward error back propagation (FFEBP) algorithm. As a results, simulation results exhibit good wafer state prediction capability after plasma etching process.

  • PDF

Taxonomic implications of multivariate analyses of Egyptian Ononis L. (Fabaceae) based on morphological traits

  • FAYED, Abdel Aziz A.;EL-HADIDY, Azza M.H.;FARIED, Ahmed M.;OLWEY, Asmaa O.
    • Korean Journal of Plant Taxonomy
    • /
    • v.49 no.1
    • /
    • pp.13-27
    • /
    • 2019
  • Numerical taxonomy is employed to determine the phenetic proximity of the Egyptian taxa belonging to the genus Ononis L. A classical clustering analysis and a principal component analysis (PCA) were used to separate 57 macro- and micromorphological characters in order to circumscribe 11 taxa of Ononis. A clustering analysis using the unweighted pair-group method with the arithmetic means (UPGMA) method gives the highest co-phenetic correlation. Results from clustering and PCA revealed the segregation of five groups. Our results are in line, to some certain degree, with the traditional sub-sectional concept, as can be seen in the grouping of the representative members of the subsections Diffusae and Mittisimae together and the representative members of the subsections Viscosae and Natrix. The phenetic uniqueness of Ononis variegata and O. reclinata subsp. mollis was formally established. However, our findings contradict the classic sectional concept; this opinion was suggested earlier in previous phylogenetic circumscriptions of the genus. The most useful characters that provide taxonomic clarity were discussed.

Local Region Spectral Analysis for Performance Enhancement of Dementia Classification (인지증 판별 성능 향상을 위한 스펙트럼 국부 영역 분석 방법)

  • Park, Jun-Qyu;Baek, Seong-Joon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5150-5155
    • /
    • 2011
  • Alzheimer's disease (AD) and vascular dementia (VD) are the most common dementia. In this paper, we proposed a region selection for classification of AD, VD and normal (NOR) based on micro-Raman spectra from platelet. The preprocessing step is a smoothing followed by background elimination to the original spectra. Then we applied the minmax method for normalization. After the inspection of the preprocessed spectra, we found that 725-777, 1504-1592 and 1632-1700 $cm^{-1}$ regions are the most discriminative features in AD, VD and NOR spectra. We applied the feature transformation using PCA (principal component analysis) and NMF (nonnegative matrix factorization). The classification result of MAP(maximum a posteriori probability) involving 327 spectra transformed features using proposed local region showed about 92.8 % true classification average rate.

Enhancement of Authentication Performance based on Multimodal Biometrics for Android Platform (안드로이드 환경의 다중생체인식 기술을 응용한 인증 성능 개선 연구)

  • Choi, Sungpil;Jeong, Kanghun;Moon, Hyeonjoon
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.3
    • /
    • pp.302-308
    • /
    • 2013
  • In this research, we have explored personal authentication system through multimodal biometrics for mobile computing environment. We have selected face and speaker recognition for the implementation of multimodal biometrics system. For face recognition part, we detect the face with Modified Census Transform (MCT). Detected face is pre-processed through eye detection module based on k-means algorithm. Then we recognize the face with Principal Component Analysis (PCA) algorithm. For speaker recognition part, we extract features using the end-point of voice and the Mel Frequency Cepstral Coefficient (MFCC). Then we verify the speaker through Dynamic Time Warping (DTW) algorithm. Our proposed multimodal biometrics system shows improved verification rate through combining two different biometrics described above. We implement our proposed system based on Android environment using Galaxy S hoppin. Proposed system presents reduced false acceptance ratio (FAR) of 1.8% which shows improvement from single biometrics system using the face and the voice (presents 4.6% and 6.7% respectively).