• Title/Summary/Keyword: PCA(Principal Component Analysis

Search Result 1,243, Processing Time 0.025 seconds

Content-based Image Indexing Using PCA

  • Yu, Young-Dal;Jun, Min-Gun;Kim, Daijij;Kang, Dae-Seong
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.827-830
    • /
    • 2000
  • In this paper, we propose the method using PCA(principal component analysis) algorithm when proposed algorithm performs multimedia information indexing. After we extract DC coefficients of DCT from MPEG video stream which is an international standard of moving picture compression coding, we apply PCA algorithm to image made of DC coefficients and extract the feature of each DC image. Using extracted features, we generate codebook and perform multimedia information indexing. The proposed algorithm Is very fast when indexing and can generate optimized codebook because of using statistical feature of data

  • PDF

Door Traversing for A Mobile Robot in Complex Environment (복잡한 환경에서 자율이동 로봇의 문 통과방법)

  • Kim Young-Joong;Lim Myo-Teak;Seo Min-Wook
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.7
    • /
    • pp.447-452
    • /
    • 2005
  • This paper presents a method that a mobile robot finds location of doors in complex environments and safely traverses the door PCA(Principal Component Analysis) algorithm using the vision information is used for a robot to find the location of door, PCA is a useful statistical technique that has found application in fields such as face recognition and image compression, and is a common technique for finding pattern in data of high dimension. Fuzzy controller using a sonar data is used for a robot to avoid obstacles and traverse the doors.

A Head Gesture Recognition Method based on Eigenfaces using SOM and PRL (SOM과 PRL을 이용한 고유얼굴 기반의 머리동작 인식방법)

  • Lee, U-Jin;Gu, Ja-Yeong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.3
    • /
    • pp.971-976
    • /
    • 2000
  • In this paper a new method for head gesture recognition is proposed. A the first stage, face image data are transformed into low dimensional vectors by principal component analysis (PCA), which utilizes the high correlation between face pose images. The a self organization map(SM) is trained by the transformed face vectors, in such a that the nodes at similar locations respond to similar poses. A sequence of poses which comprises each model gesture goes through PCA and SOM, and the result is stored in the database. At the recognition stage any sequence of frames goes through the PCA and SOM, and the result is compared with the model gesture stored in the database. To improve robustness of classification, probabilistic relaxation labeling(PRL) is used, which utilizes the contextural information imbedded in the adjacent poses.

  • PDF

MPEG Video Retrieval using KD-Trees and PCA (KD-Trees 와 PCA를 이용한 MPEG 비디오 검색)

  • 김대일;장혜경;홍종선;김영호;강대성
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2003.06a
    • /
    • pp.118-121
    • /
    • 2003
  • 본 논문은 동영상 압축 부호화에 대한 표준안인 MPEG기반의 압축 비디오 stream에서[1, 2], 질의 영상에 대한 효율적인 검색 기법을 제안한다. 비디오 검색은 높은 차원의 색인 정보를 이용하는데, 높은 차원의 data set을 색인 정보로 하여 효율적인 검색 능력을 보여주는 KD-Trees(K Dimensional-Trees)알고리즘[3]을 비디오 검색기법에 적용하고자 한다. 먼저, key frame에 PCA (Principal Component Analysis) 알고리즘[4]을 이용하여 색인 정보를 추출한 다음, 추출된 색인 정보를 KD-Trees에 적용하여 효율적인 검색을 가능하게 한다. 실험 결과, 기존의 검색 기법보다 상당한 양의 처리 시간과 메모리 공간을 줄일 수 있음을 보였다.

  • PDF

Classification of K-POP Dance Motion Using Multilinear PCA (다선형 PCA를 이용한 K-POP 댄스모션 분류)

  • Lee, Jae-Neung;Kwak, Keun-Chang
    • Annual Conference of KIPS
    • /
    • 2018.05a
    • /
    • pp.486-487
    • /
    • 2018
  • 본 논문에서는 다선형 PCA(Principal Component Analysis)를 이용한 키넥트 센서 기반 댄스 모션분류방법을 제안한다. 댄스 모션 분류를 수행하기 위해서, 먼저 키넥트 데이터 깊이 영상과 이진영상을 보간법을 통해 데이터의 크기를 정렬시켜준다. 다음으로 다선형 주성분 분석 기법 (MPCA)을 이용하여 연속된 댄스모션영상들에 대한 특징을 추출하고, 유클리디안 분류기를 통해 클래스 분류한다. 본 실험에 사용된 데이터베이스는 키넥트 센서를 기반으로 전문 댄서 4명을 통해 취득된다. 총 100곡의 K-POP을 선정하였고, 곡마다 2개의 포인트 안무를 통해 총 200개의 포인트 댄스모션 데이터베이스를 구축하였다. 실험결과 제안된 방법은 89.5%의 성능을 나타낸다.

Modified distance measures for PCA-based face recognition

  • Song Young-Jun;Kim Young-Gil;Kim Nam
    • International Journal of Contents
    • /
    • v.1 no.2
    • /
    • pp.1-4
    • /
    • 2005
  • In this paper, we compare 5 weighted distance measures between feature vectors with respect to the recognition performance of the principal component analysis(PCA)-based face recognition method, and propose modified weighted distance. The proposed method was modification of z, the weighted vector. The simulation was performed using the ORL face database, showed the best result for some weighted distances such as weighted manhattan, weighted angle-based, weighted modified manhattan, and weighted modified SSE. We also showed that using some various values of z(weighted values) we can achieve better recognition results that using the existing weighted value.

  • PDF

Development of Odor Sensor Array using Pattern Classification Technology (패턴분류 기술을 이용한 후각센서 어레이 개발)

  • Park, Tae-Won;Lee, Jin-Ho;Cho, Young-Chung;Ahn, Chul
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.454-459
    • /
    • 2006
  • There are two main streams for pattern classification technology One is the method using PCA (Principal Component Analysis) and the other is the method using Neural network. Both of them have merits and demerits. In general, using PCA is so simple while using neural network can improve algorithm continually. Algorithm using neural network needs so many calculations rendering very slow response. In this work, an attempt is made to develop algorithms adopting both PCA and neural network merits for simpler, but faster and smarter.

  • PDF

Rapid metabolic discrimination between Zoysia japonica and Zoysia sinica based on multivariate analysis of FT-IR spectroscopy (FT-IR스펙트럼 데이터의 다변량통계분석 기반 들잔디와 갯잔디의 대사체 수준 신속 식별 체계)

  • Yang, Dae-Hwa;Ahn, Myung Suk;Jeong, Ok-Cheol;Song, In-Ja;Ko, Suk-Min;Jeon, Ye-In;Kang, Hong-Gyu;Sun, Hyeon-Jin;Kwon, Yong-Ik;Kim, Suk Weon;Lee, Hyo-Yeon
    • Journal of Plant Biotechnology
    • /
    • v.43 no.2
    • /
    • pp.213-222
    • /
    • 2016
  • This study aims to establish a system for the rapid discrimination of Zoysia species using metabolite fingerprinting of FT-IR spectroscopy combined with multivariate analysis. Whole cell extracts from leaves of 19 identified Zoysia japonica, 6 identified Zoysia sinica, and 38 different unidentified Zoysia species were subjected to Fourier transform infrared spectroscopy (FT-IR). PCA (principle component analysis) and PLS-DA (partial least square discriminant analysis) from FT-IR spectral data successfully divided the 25 identified turf grasses into two groups, representing good agreement with species identification using molecular markers. PC (principal component) loading values show that the $1,100{\sim}950cm^{-1}$ region of the FT-IR spectra are important for the discrimination of Zoysia species. A dendrogram based on hierarchical clustering analysis (HCA) from the PCA and PLS-DA data of turf grasses showed that turf grass samples were divided into Zoysia japonica and Zoysia sinica in a species-dependent manner. PCA and PLS-DA from FT-IR spectral data of Zoysia species identified and unidentified by molecular markers successfully divided the 49 turf grasses into Z. japonica and Z. sinica. In particular, PLS-DA and the HCA dendrogram could mostly discriminate the 47 Z. japonica grasses into two groups depending on their origins (mountainous areas and island area). Considering these results, we suggest that FT-IR fingerprinting combined with multivariate analysis could be applied to discriminate between Zoysia species as well as their geographical origins of various Zoysia species.

Metabolic Discrimination of Papaya (Carica papaya L.) Leaves Depending on Growth Temperature Using Multivariate Analysis of FT-IR Spectroscopy Data (FT-IR 스펙트럼 다변량통계분석을 이용한 파파야(Carica papaya L.)의 생육온도 변화에 따른 대사체 수준 식별)

  • Jung, Young Bin;Kim, Chun Hwan;Lim, Chan Kyu;Kim, Sung Chel;Song, Kwan Jeong;Song, Seung Yeob
    • Journal of the Korean Society of International Agriculture
    • /
    • v.31 no.4
    • /
    • pp.378-383
    • /
    • 2019
  • To determine whether FT-IR spectral analysis based on multivariate analysis for whole cell extracts can be used to discriminate papaya at metabolic level. FT-IR spectral data from leaves were analyzed by principal component analysis (PCA), partial least square discriminant analysis (PLS-DA) and hierarchical clustering analysis (HCA). FT-IR spectra confirmed typical spectral differences between the frequency regions of 1,700-1,500, 1,500-1,300 and 1,100-950 cm-1, respectively. These spectral regions were reflecting the quantitative and qualitative variations of amide I, II from amino acids and proteins (1,700-1,500 cm-1), phosphodiester groups from nucleic acid and phospholipid (1,500-1,300 cm-1) and carbohydrate compounds (1,100-950 cm-1). The result of PCA analysis showed that papaya leaves could be separated into clusters depending on different growth temperature. In this case, showed discrimination confirmed according to metabolite content of growth condition from papaya. And PLS-DA analysis also showed more clear discrimination pattern than PCA result. Furthermore, these metabolic discrimination systems could be applied for rapid selection and classification of useful papaya cultivars.

Efficient Face Recognition using Low-Dimensional PCA: Hierarchical Image & Parallel Processing

  • Song, Young-Jun;Kim, Young-Gil;Kim, Kwan-Dong;Kim, Nam;Ahn, Jae-Hyeong
    • International Journal of Contents
    • /
    • v.3 no.2
    • /
    • pp.1-5
    • /
    • 2007
  • This paper proposes a technique for principal component analysis (PCA) to raise the recognition rate of a front face in a low dimension by hierarchical image and parallel processing structure. The conventional PCA shows a recognition rate of less than 50% in a low dimension (dimensions 1 to 6) when used for facial recognition. In this paper, a face is formed as images of 3 fixed-size levels: the 1st being a region around the nose, the 2nd level a region including the eyes, nose, and mouth, and the 3rd level image is the whole face. PCA of the 3-level images is treated by parallel processing structure, and finally their similarities are combined for high recognition rate in a low dimension. The proposed method under went experimental feasibility study with ORL face database for evaluation of the face recognition function. The experimental demonstration has been done by PCA and the proposed method according to each level. The proposed method showed high recognition of over 50% from dimensions 1 to 6.