• Title/Summary/Keyword: PCA(Principal Component Analysis

Search Result 1,243, Processing Time 0.032 seconds

Modeling of Recycling Oxic and Anoxic Treatment System for Swine Wastewater Using Neural Networks

  • Park, Jung-Hye;Sohn, Jun-Il;Yang, Hyun-Sook;Chung, Young-Ryun;Lee, Minho;Koh, Sung-Cheol
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.5
    • /
    • pp.355-361
    • /
    • 2000
  • A recycling reactor system operated under sequential anoxic and oxic conditions for the treatment of swine wastewater has been developed, in which piggery slurry is fermentatively and aerobically treated and then part of the effluent is recycled to the pigsty. This system significantly removes offensive smells (at both the pigsty and the treatment plant), BOD and others, and may be cost effective for small-scale farms. The most dominant heterotrophic were, in order, Alcaligenes faecalis, Brevundimonas diminuta and Streptococcus sp., while lactic acid bacteria were dominantly observed in the anoxic tank. We propose a novel monitoring system for a recycling piggery slurry treatment system through the use of neural networks. In this study, we tried to model the treatment process for each tank in the system (influent, fermentation, aeration, first sedimentation and fourth sedimentation tanks) based upon the population densities of the heterotrophic and lactic acid bacteria. Principal component analysis(PCA) was first applied to identify a relationship between input and output. The input would be microbial densities and the treatment parameters, such as population densities of heterotrophic and lactic acid bacteria, suspended solids(SS), COD, NH$_4$(sup)+-N, ortho-phosphorus (o-P), and total-phosphorus (T-P). then multi-layer neural networks were employed to model the treatment process for each tank. PCA filtration of the input data as microbial densities was found to facilitate the modeling procedure for the system monitoring even with a relatively lower number of imput. Neural network independently trained for each treatment tank and their subsequent combined data analysis allowed a successful prediction of the treatment system for at least two days.

  • PDF

Fingerprinting Differentiation of Astragalus membranaceus Roots According to Ages Using 1H-NMR Spectroscopy and Multivariate Statistical Analysis

  • Shin, Yoo-Soo;Bang, Kyong-Hwan;In, Dong-Su;Sung, Jung-Sook;Kim, Seon-Young;Ku, Bon-Cho;Kim, Suk-Weon;Lee, Dong-Ho;Choi, Hyung-Kyoon
    • Biomolecules & Therapeutics
    • /
    • v.17 no.2
    • /
    • pp.133-137
    • /
    • 2009
  • The root of Astragalus membranaceus is a traditional folk medicine that has been used for many therapeutic purposes in Asia. It reportedly acts as an immunostimulant, tonic, hepatoprotective, diuretic, antidiabetic, analgesic, expectorant, sedative, and anticancer drug. In this study, metabolomic profiling was applied to the roots of A. membranaceus of different ages using NMR coupled with two multivariate statistical analysis methods: such as principal components analysis (PCA) and canonical discriminant analysis (CDA). This allowed various metabolites to be assigned in NMR spectra, including $\gamma$-aminobutyric acid (GABA), aspartic acid, succinic acid, glutamic acid, glutamine, N-acetyl aspartic acid, acetic acid, arginine, alanine, threonine, lactic acid, and valine. The score plot from PCA and also CDA allowed a clear separation between samples according to age.

Secured Authentication through Integration of Gait and Footprint for Human Identification

  • Murukesh, C.;Thanushkodi, K.;Padmanabhan, Preethi;Feroze, Naina Mohamed D.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2118-2125
    • /
    • 2014
  • Gait Recognition is a new technique to identify the people by the way they walk. Human gait is a spatio-temporal phenomenon that typifies the motion characteristics of an individual. The proposed method makes a simple but efficient attempt to gait recognition. For each video file, spatial silhouettes of a walker are extracted by an improved background subtraction procedure using Gaussian Mixture Model (GMM). Here GMM is used as a parametric probability density function represented as a weighted sum of Gaussian component densities. Then, the relevant features are extracted from the silhouette tracked from the given video file using the Principal Component Analysis (PCA) method. The Fisher Linear Discriminant Analysis (FLDA) classifier is used in the classification of dimensional reduced image derived by the PCA method for gait recognition. Although gait images can be easily acquired, the gait recognition is affected by clothes, shoes, carrying status and specific physical condition of an individual. To overcome this problem, it is combined with footprint as a multimodal biometric system. The minutiae is extracted from the footprint and then fused with silhouette image using the Discrete Stationary Wavelet Transform (DSWT). The experimental result shows that the efficiency of proposed fusion algorithm works well and attains better result while comparing with other fusion schemes.

Improvement of MLLR Speaker Adaptation Algorithm to Reduce Over-adaptation Using ICA and PCA (과적응 감소를 위한 주성분 분석 및 독립성분 분석을 이용한 MLLR 화자적응 알고리즘 개선)

  • 김지운;정재호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.7
    • /
    • pp.539-544
    • /
    • 2003
  • This paper describes how to reduce the effect of an occupation threshold by that the transform of mixture components of HMM parameters is controlled in hierarchical tree structure to prevent from over-adaptation. To reduce correlations between data elements and to remove elements with less variance, we employ PCA (Principal component analysis) and ICA (independent component analysis) that would give as good a representation as possible, and decline the effect of over-adaptation. When we set lower occupation threshold and increase the number of transformation function, ordinary MLLR adaptation algorithm represents lower recognition rate than SI models, whereas the proposed MLLR adaptation algorithm represents the improvement of over 2% for the word recognition rate as compared to performance of SI models.

INTERIOR ROAD NOISE ANALYSIS WITH PRINCIPAL COMPONENTS

  • Vandenbroeck, D.;Hendricx, W.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.854-859
    • /
    • 1994
  • As powertrain noise is better and better controlled, road noise inputs become more important. The interior road noise of a car is mainly induced by the wheels rolling over the road surface. Each of the four wheels act as an independent and uncorrelated excitation input. To rank the energy transfer form each input to the interior, a Transfer Path Analysis (TPA) needs to be made-which requires operational vibration measurements. However due to the multiple uncorrelated inputs, phase relations vary continuously. It is therefore necessary to separate the operational data into set of "independent phenomena" by means of a Principal Component Analysis (PCA). A TPA can then be carried out for each independent phenomenon. Operational deflection shapes referenced to these principal components share the physical phenomena. The details of the methodology are discussed and a discussion of the results on a car shows that the method gives accurate results for full vehicle testing.e testing.

  • PDF

Cluster Analysis of the Foliose Lichens in Mt. Duckyoo (덕유산 엽상지의식물의 집락분석)

  • Park, Seung Tai
    • The Korean Journal of Ecology
    • /
    • v.6 no.2
    • /
    • pp.145-151
    • /
    • 1983
  • The epiphytic lichen communities were analysed in terms of cluster analysis on forty two stands and eight environmental variables in Mt. Duckyoo. Ordination of stand and species by principal component analysis (PCA) and sum of square algorithm (SSA) gave similar results. Species cluster showed three groups(I, II, III) and stand revealed three groups (A, B, C). Interaction of stand and species cluster was interpreted by analysis of concentration technique. The results indicated a significant cluster structure at the level of different environment variable.

  • PDF

Plasma Monitoring by Multivariate Analysis Techniques (다변량 분석기법을 통한 플라즈마 공정 모니터링 기술)

  • Jang, Haegyu;Koh, Kyongbeom;Lee, Honyoung;Chae, Heeyeop
    • Vacuum Magazine
    • /
    • v.2 no.4
    • /
    • pp.27-32
    • /
    • 2015
  • Plasma diagnosis and multivariate analysis techniques for plasma processes are reviewed. The principles and applications of optical emission spectroscopy (OES) and VI probe are discussed briefly. The research results of principal component analysis (PCA), one of the widely used multivariate analysis techniques for plasma process monitoring is discussed in this article.

Estimation of Source Contribution of Particulate Matter in Taegu Area using Factor Analysis (다변량 통계분석법을 이용한 대구지역 부유분진의 오염원 기여도 추정)

  • 최성우;송형도
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.4
    • /
    • pp.1-8
    • /
    • 2000
  • The objective of this study was to identify the sources and to estimate the source contributions to the atmospheric TSP(total suspended particulate matter) and PM-10(particulate matter with aerodynamic diameters less than 10$\mu\textrm{m}$) concentration in Taegu area. A total of 84 samples was collected during the January to December 1999. TSP and PM-10 were collected on filters by portable air sampler, and heavy metals in TSP and PM-배 were analyzed by ICO(Inductively Coupled Plasma Spectrometery) after preliminary treatment. The results were follow as : First, annual average of TSP and PM-10 concentration was 123 and 69$\mu\textrm{g}$/㎥ respectively. The concentration of TSP and PM-10 were highest in winter season compared to other seasons. Second, the concentration of Al, Fe, Mn were higher in TSP than in PM-10, indicating that these heavy metals are generally associate with natural contributions. Third, metal combinations showed that a high correlation among concentrations of heavy metals were follows: As Al, Fe and Mn in TSP ; Ni, Cr, Cd and Pb in PM-10. Finally, Statistical analysis was performed using Principal Components Analysis(PCA) in order to find possible sources of the pollutants. The factor analysis was permitted to identify four major sources(soil/road dust resuspension, waste incineration, furl combustion, vehicular emission) in each fraction. These source accounted for at least 83, 85% of variance of TSP and PM-10 concentration in Taegu area.

  • PDF

Principal Component Analysis Based Ecosystem Differences between South and North Korea Using Multivariate Spatial Environmental Variables (다변량 환경 공간변수 주성분 분석을 통한 남·북 생태계 차이)

  • Yu, Jaeshim;Kim, Kyoungmin
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.4
    • /
    • pp.15-27
    • /
    • 2015
  • The objectives of this study are to analyze the quantitative ecological principal components of Korean Peninsula using the multivariate spatial environmental datasets and to compare the ecological difference between South and North Korea. Ecological maps with GIS(Geographical Information System) are constructed by PCA(Principal Component Analysis) based on seventeen raster(cell based) variables at 1km resolution. Ecological differences between South and North Korea are extracted by Factor Analysis using ecosystem maps masked from Korean ones. Spatial data include SRTM(Shuttle Radar Topography Mission), Temperature, Precipitation, SWC(Soil Water Content), fPAR(Fraction of Photosynthetically Active Radiation) representing for a productivity, and SR(Solar Radiation), which all cover Korean peninsula. When it performed PCA, the first three scores were assigned to red, green, and blue color. This color triplet indicates the relative mixture of the seventeen environmental conditions inside each ecological region. The first red one represents for 'physiographic conditions' worked by high elevation and solar radiation and low temperature. The second green one stands for 'seasonality' caused by seasonal variations of temperature, precipitation, and productivity. The third blue one means 'wetness condition' worked by high value such as precipitation and soil water contents. FA extraction shows that South Korea has relatively warm and humid ecosystem affected by high temperature, precipitation, and soil water contents whereas North Korea has relatively cold and dry ecosystem due to the high elevation, low temperature and precipitation. Results would be useful at environmental planning on inaccessible land of North Korea.

Development of Learning Algorithm using Brain Modeling of Hippocampus for Face Recognition (얼굴인식을 위한 해마의 뇌모델링 학습 알고리즘 개발)

  • Oh, Sun-Moon;Kang, Dae-Seong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.5 s.305
    • /
    • pp.55-62
    • /
    • 2005
  • In this paper, we propose the face recognition system using HNMA(Hippocampal Neuron Modeling Algorithm) which can remodel the cerebral cortex and hippocampal neuron as a principle of a man's brain in engineering, then it can learn the feature-vector of the face images very fast and construct the optimized feature each image. The system is composed of two parts. One is feature-extraction and the other is teaming and recognition. In the feature extraction part, it can construct good-classified features applying PCA(Principal Component Analysis) and LDA(Linear Discriminants Analysis) in order. In the learning part, it cm table the features of the image data which are inputted according to the order of hippocampal neuron structure to reaction-pattern according to the adjustment of a good impression in the dentate gyrus region and remove the noise through the associate memory in the CA3 region. In the CA1 region receiving the information of the CA3, it can make long-term memory learned by neuron. Experiments confirm the each recognition rate, that are face changes, pose changes and low quality image. The experimental results show that we can compare a feature extraction and learning method proposed in this paper of any other methods, and we can confirm that the proposed method is superior to existing methods.